Mathematics and Statistics

Bao Qin Li, Professor and Chair
Gerardo Aladro, Associate Professor
Dongmei An, Instructor
Leonid Bekker, Instructor
Chongsheng Cao, Associate Professor
Zhenmin Chen, Professor
Laura DeCarli, Associate Professor
Tedi Draghi, Associate Professor
Julian Edward, Professor
Domitila Fox, Instructor
Ciprian Gal, Assistant Professor
Florence George, Assistant Professor
Laura Reisert, Instructor
Michael Rosenthal, Instructor
Alireza Rostamian, Instructor
Dev K. Roy, Associate Professor
Philippe Rukimbira, Professor
Sneh Gulati, Professor
Enrique Villamar, Professor
Wei Wang, Assistant Professor
Zhongming Wang, Assistant Professor
Anna Wlodarczyk, Instructor
Wensong Wu, Assistant Professor
Yi Zhi Yang, Instructor
Mirroslav Yotov, Assistant Professor
Hassan Zahedi-Jasbi, Associate Professor
Noel Zuniga, Lecturer
John Zweibel, Associate Professor

Bachelor of Science in Mathematics

The Bachelor’s degree in Mathematics emphasizes a deeper study of pure mathematics. A student planning to continue into graduate study should major in Mathematics.

Degree Program Hours: 120

Lower Division Program

To qualify for admission to the program, FIU undergraduates must have met all the lower division requirements, completed 60 semester hours, and must be otherwise acceptable into the program.

Common Prerequisite Courses and Equivalencies

<table>
<thead>
<tr>
<th>FIU Course(s)</th>
<th>Equivalent Course(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC 2311</td>
<td>MACX311</td>
</tr>
<tr>
<td>MAC 2312</td>
<td>MACX312</td>
</tr>
<tr>
<td>MAC 2313</td>
<td>MACX313</td>
</tr>
<tr>
<td>MAP 2302</td>
<td>MAPX302</td>
</tr>
<tr>
<td>COP 2210 or COP 2250 or COP 2270</td>
<td>COPXXXX</td>
</tr>
<tr>
<td>BSC 1010, BSC 1010L, BSC 1011, BSC 1011L, CHM 1045, CHM 1045L, CHM 1046, CHM 1046L, PHY 2048, PHY 2048L, PHY 2049, PHY 2049L</td>
<td>BSCXXXX/XXXXXL, CHMXXXX/XXXXXL, PHYXXXX/XXXXXL</td>
</tr>
</tbody>
</table>

¹a scientific programming course designed for computer science majors.
²one laboratory based science course designed for science majors.

Courses which form part of the statewide articulation between the State University System and the Community College System will fulfill the Lower Division Common Prerequisites.

For generic course substitutions/equivalencies for Common Program Prerequisites offered at community colleges, state colleges, or state universities, visit: http://www.flvc.org, See Common Prerequisite Manual.

Required Courses

Common Prerequisites

- MAC 2311 Calculus I
- MAC 2312 Calculus II
- MAC 2313 Calculus III
- MAP 2302 Differential Equations
- COP 2210 Introduction to Programming or COP 2250 Java Programming or COP 2270 C for Engineers

Completion of one of the following courses with labs:

- BSC 1010 General Biology I
- BSC 1010L General Biology Lab I
- BSC 1011 General Biology II
- BSC 1011L General Biology Lab II
- CHM 1045 General Chemistry I
- CHM 1045L General Chemistry Lab I
- CHM 1046 General Chemistry II
- CHM 1046L General Chemistry Lab II
- PHY 2048 Physics with Calculus I
- PHY 2048L Physics with Calculus Lab I
- PHY 2049 Physics with Calculus II
- PHY 2049L Physics with Calculus Lab II

Courses required for the degree:

Completion of one additional science course with lab from previous list, and

- MAS 3105 Linear Algebra

Upper Division Program

Required Courses

- MAA 3200 Introduction to Advanced Mathematics
### Admission Requirements

1. Current enrollment in a Bachelor’s degree program in mathematics.
2. Current overall GPA of at least 3.2 and GPA of at least 3.2 in upper division courses.
3. Completion of 75-90 undergraduate credit-hours.
4. (Verbal and Quantitative) GRE scores with a minimum of 151 in the quantitative portion before entering the MS phase of the program.
5. Approval of the graduate committee.

### Completion Requirements

<table>
<thead>
<tr>
<th>Year 1 and 2</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAA 3200</td>
<td>Introduction to Advanced Mathematics</td>
<td>MAA 4211</td>
</tr>
<tr>
<td>STA 4321</td>
<td>Introduction to Mathematical Sciences I</td>
<td>STA 4301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>MAA 3200</td>
</tr>
<tr>
<td>STA 4321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>MAA 5616</td>
</tr>
<tr>
<td>One course from List 1 or 2</td>
</tr>
<tr>
<td>Senior Seminar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Nine graduate credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nine graduate credits</td>
</tr>
</tbody>
</table>

The graduate courses distribution should follow catalog descriptions of the master’s program requirements. Students must take at least 3 courses from List 1 and at least 3 courses from List 2. The balance of the 140 semester hours required for graduation may be chosen from any courses in the university, a minimum of six (6) of these should be at the upper division level or higher.

### Electives

The balance of the 60 semester hour requirement for graduation may be chosen from any courses in the University approved by the student’s advisor. Remarks: The following courses are not acceptable for credit toward graduation, unless a student has passed the course before declaring a Mathematics major: MAC 2233, STA 1013, STA 2122, STA 3123, STA 2023, and QMB 3200 (College of Business Administration).

### Combined BS in Mathematics/MS in Mathematical Sciences

This program will allow strong students in mathematics to complete a bachelor’s degree and a master’s degree in 5 years rather than the usual six. A minimum of 140 credits are required for graduation with both the bachelor’s and the master’s degree. In addition to fulfilling the requirements for the Bachelor’s degree in mathematics, these 140 credits include 30 graduate credits required for the Master’s of Science in Mathematical Sciences. A maximum of ten (10) graduate mathematics credits can be concurrently used toward the bachelor’s and master’s degrees.

To be considered for admission to the combined bachelor’s/master’s degree program, students must have completed at least 75-90 credits in the bachelor’s degree program at FIU and meet the admissions criteria for the graduate degree program to which they are applying. Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor’s degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor’s degree program. Upon conferral of the bachelor’s degree, the student will be granted graduate status and be eligible for graduate assistantships. Only 5000-level or higher courses, and no more than the number of credits specified by the program catalog, may be applied toward both degrees.

### Table of Elective Courses

<table>
<thead>
<tr>
<th>List 1</th>
<th>List 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAD 4203</td>
<td>MAP 4401</td>
</tr>
<tr>
<td>Introduction to Combinatorics</td>
<td>Advanced Differential Equations</td>
</tr>
<tr>
<td>MAA 4402</td>
<td>MAD 3305</td>
</tr>
<tr>
<td>Complex Variables</td>
<td>Graph Theory</td>
</tr>
<tr>
<td>MTG 3212</td>
<td>MAP 3103</td>
</tr>
<tr>
<td>College Geometry</td>
<td>Mathematical Modeling</td>
</tr>
<tr>
<td>MAA 4203</td>
<td>STA 4322</td>
</tr>
<tr>
<td>Number Theory</td>
<td>Mathematical Statistics II</td>
</tr>
<tr>
<td>MAA 4212</td>
<td>MAA 3401</td>
</tr>
<tr>
<td>Topics in Advanced Calculus</td>
<td>Numerical Analysis</td>
</tr>
<tr>
<td>MAS 4302</td>
<td>MAA 4302</td>
</tr>
<tr>
<td>Topics in Algebraic Structures</td>
<td>Mathematical Logic</td>
</tr>
<tr>
<td>MTG 4302</td>
<td>MAA 4102</td>
</tr>
<tr>
<td>Topology</td>
<td>Axiomatic Set Theory</td>
</tr>
</tbody>
</table>

**Remarks:** The following courses are not acceptable for credit toward graduation, unless a student has passed the course before declaring a Mathematics major: MAC 2233, STA 1013, STA 2122, STA 3123, STA 2023, and QMB 3200 (College of Business Administration).
MAS 4302  Topics in Algebraic Structures  3
MTG 4302  Topology  3

List 2
MAP 4401  Advanced Differential Equations  3
MAD 3305  Graph Theory  3
MAP 3103  Mathematical Modeling  3
STA 4322  Mathematical Statistics II  3
MAD 3401  Numerical Analysis  3
MHF 4302  Mathematical Logic  3
MHF 4102  Axiomatic Set Theory  3

Bachelor of Arts in Mathematics:
Mathematics Education Major

Degree Program Hours: 120

Lower Division Preparation
To qualify for admission to the program, a student must have met all the lower division requirements and must be otherwise acceptable into the program. In addition to the University Core Curriculum, Foreign Language, and Common Prerequisites, requirements include a minimum overall GPA of 2.5 for all lower-division transfer coursework and achieve the competencies of the General Knowledge Exam, or the Praxis I.

Common Prerequisite Courses and Equivalencies

<table>
<thead>
<tr>
<th>FIU Course(s)</th>
<th>Equivalent Course(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC 2311</td>
<td>MACX311</td>
</tr>
<tr>
<td>MAC 2312</td>
<td>MACX312</td>
</tr>
<tr>
<td>MAC 2313</td>
<td>MACX313</td>
</tr>
<tr>
<td>MAP 2302</td>
<td>MAPX302</td>
</tr>
<tr>
<td>COP 2250 or COP 2210 or COP 2270</td>
<td>COPXXXX¹</td>
</tr>
<tr>
<td>BSC 1010, BSC 1010L, BSCXXXX/XXXXX² or CHM 1045L</td>
<td>PHYXXXX/XXXXX²</td>
</tr>
<tr>
<td>BSC 1011, BSC 1011L, CHM 1045, CHM 1045L, PHY 2048, PHY 2048L, PHY 2049, PHY 2049L</td>
<td>PHYXXXX/XXXXX²</td>
</tr>
</tbody>
</table>

¹a scientific programming course designed for computer science majors.
²one laboratory based science course designed for science majors.

Courses which form part of the statewide articulation between the State University System and the Community College System will fulfill the Lower Division Common Prerequisites.

For generic course substitutions/equivalencies for Common Program Prerequisites offered at community colleges, state colleges, or state universities, visit: http://www.flvc.org, See Common Prerequisite Manual.

Common Prerequisites
MAC 2311  Calculus I
MAC 2312  Calculus II
MAC 2313  Calculus III
MAP 2302  Differential Equations
COP 2250  Java Programming
or
COP 2210  Introduction to Programming
or

COP 2270  C for Engineers

Completion of one of the following courses with labs:
BSC 1010  General Biology I
BSC 1010L  General Biology Lab I
BSC 1011  General Biology II
BSC 1011L  General Biology Lab II
CHM 1045  General Chemistry I
CHM 1045L  General Chemistry Lab I
CHM 1046  General Chemistry II
CHM 1046L  General Chemistry Lab II
PHY 2048  Physics with Calculus I
PHY 2048L  Physics with Calculus Lab I
PHY 2049  Physics with Calculus II
PHY 2049L  Physics with Calculus Lab II

Courses required for the degree:
Completion of one additional science course with lab from previous list, and
MAD 2104  Discrete Math
MAS 3105  Linear Algebra

Upper Division Math and Statistics Core: 23
MAP 3103  Mathematical Modeling  3
MAP 3103L  Lab for Mathematical Modeling  1
MAA 3200  Introduction to Advanced Mathematics  3
MTG 3212  College Geometry  3
MHF 3404  History of Mathematics  3
MAS 4203  Number Theory  3
MAT 4510  Problem Solving Seminar  3
STA 4321  Introduction to Mathematical Statistics I  3
or
STA 3163  Statistical Methods I  3
MAE 3894  Early Teaching Experience  1

Upper Division Education Core: 29
MAE 4393  Nature of Math and Science  3
MAE 4394  Perspectives in Math and Science Education  3
MAE 3893  Mathematics Education Seminar  1
RED 4325  Subject Area Reading  3
MAE 3651  Learning Mathematics with Technology  3
MAE 4330  Teaching and Learning Secondary Mathematics  4
TSL 4324  ESOL Issues and Strategies for Content Area Teachers – GL  3
MAE 4942  Student Teaching  9

Minor in Mathematics

Required Courses
MAC 2311-2-3 Calculus I-I-III (or equivalent).
Plus four courses from those approved for the upper division program of the BS in Mathematics. MAP 2302 and MAS 3105 may be included among these four courses.
A grade of ‘C’ or higher is necessary for the minor.
Remarks: Courses completed elsewhere may be applied to the Mathematics minor, with the approval of the department. However, at least 2 of the 4 courses noted above, excluding MAC 2311-2-3, must be completed at FIU.

Minor in Mathematical Sciences

Required Courses
MAC 2311-2-3. Calculus I,II,III (or equivalent).
Plus MAP 2302, MAS 3105, and two courses from the following list:

- COP 3337 Intermediate Programming 3
- COP 3402 Fundamentals of Computer Systems 3
- MAD 2104 Discrete Mathematics 3
- MAD 3401 Numerical Analysis 3
- MAD 3512 Introduction to the Theory of Algorithms 3
- MAT 4934 Senior Seminar 1
- MAP 4401 Advanced Differential Equations 3
- STA 3163-4 Statistical Methods I and II 3-3
- COP 3530 Data Structures 3
- MAA 4402 Complex Variables 3
- MAD 3305 Graph Theory 3
- MAD 4203 Intro to Combinatorics 3
- MAD 5405 Numerical Methods 3
- MAP 3103 Mathematical Modeling 3
- MAS 5145 Applied Linear Algebra 3
- MHF 4302 Mathematical Logic 3
- STA 4603 Mathematical Techniques in Operations Research I 3
- STA 4604 Mathematical Techniques in Operations Research II 3
- STA 5446 Probability Theory I 3

A grade of ‘C’ or higher is necessary for the minor. Remarks: Courses completed elsewhere may be applied to the Mathematical Sciences minor, with the approval of the department. However, at least 2 of the 4 courses noted above, excluding MAC 2311-2-3, must be completed at FIU.

Bachelor of Science in Statistics

Degree Program Hours: 120

Lower Division Preparation

To qualify for admission to the program, FIU undergraduates must have met all the lower division requirements, completed 60 semester hours, and must be otherwise acceptable into the program.

Common Prerequisite Courses and Equivalencies

<table>
<thead>
<tr>
<th>FIU Course(s)</th>
<th>Equivalent Course(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP 2210 or COP 2270</td>
<td>COPXXXX¹</td>
</tr>
<tr>
<td>MAC 2311</td>
<td>MACX311</td>
</tr>
<tr>
<td>MAC 2312</td>
<td>MACX312</td>
</tr>
<tr>
<td>MAC 2313</td>
<td>MACX313</td>
</tr>
<tr>
<td>BSC 1010, BSC 1010L,</td>
<td>BSCXXXX/XXXXXL² or</td>
</tr>
<tr>
<td>BSC 1011, BSC 1011L,</td>
<td>CHMXXXX/XXXXXL² or</td>
</tr>
<tr>
<td>BSC 2023, BSC 2023L</td>
<td>PHYXXXX/XXXXXL²</td>
</tr>
<tr>
<td>CHM 1032, CHM 1032L</td>
<td></td>
</tr>
<tr>
<td>CHM 1033, CHM 1033L</td>
<td></td>
</tr>
<tr>
<td>CHM 1045, CHM 1045L</td>
<td></td>
</tr>
<tr>
<td>CHM 1046, CHM 1046L</td>
<td></td>
</tr>
<tr>
<td>PHY 2048, PHY 2048L</td>
<td></td>
</tr>
<tr>
<td>PHY 2049, PHY 2049L</td>
<td></td>
</tr>
<tr>
<td>STA 2XXX</td>
<td>STA2XXX</td>
</tr>
</tbody>
</table>

¹a scientific programming course designed for computer science majors.
²two laboratory based science course designed for science majors.

Courses which form part of the statewide articulation between the State University System and the Community College System will fulfill the Lower Division Common Prerequisites.

For generic course substitutions/equivalencies for Common Program Prerequisites offered at community colleges, state colleges, or state universities, visit: http://www.flvc.org. See Common Prerequisite Manual.

Common Prerequisites

- COP 2210 Programming I
- COP 2270 C for Engineers
- MAC 2311 Calculus I
- MAC 2312 Calculus II
- MAC 2313 Multivariable Calculus
- STA 2XXX Any introductory statistics course or consent of the department

Two of the following:

- BSC 1010 General Biology I
- BSC 1010L General Biology Lab I
- BSC 1011 General Biology II
- BSC 1011L General Biology Lab II
- BSC 2023 Human Biology
- BSC 2023L Human Biology Lab
- CHM 1032 Chemistry & Society
- CHM 1032L Chemistry & Society Lab
- CHM 1033 Survey of Chemistry
- CHM 1033L Survey of Chemistry Lab
- CHM 1045 General Chemistry I
- CHM 1045L General Chemistry Lab I
- CHM 1046 General Chemistry II
- CHM 1046L General Chemistry Lab II
- PHY 2048 Physics with Calculus I
- PHY 2048L General Physics Lab I
- PHY 2049 Physics with Calculus II
- PHY 2049L General Physics Lab II

Courses required for the degree:

- MAS 3105 Linear Algebra

Upper Division Program

Required Courses: (33)

- STA 3163 Statistical Methods I 3
- STA 3164 Statistical Methods II 3
- STA 3951 Oral Presentations in Statistics 1
- STA 4321 Introduction to Mathematical Statistics I 3
- STA 4322 Introduction to Mathematical Statistics II 3
- STA 4202 Introduction to Design of Experiments 3
- STA 4234 Introduction to Regression Analysis 3
- STA 4664 Statistical Quality Control 3
- ENC 3213 Professional & Technical Writing 3

Six additional credit hours of approved statistics courses. Three additional credit hours in an approved statistics, mathematics, or computer science course. A grade of ‘C’ or higher in each of these courses is necessary for the major.

Electives

The balance of the 120 semester hour requirement for graduation may be chosen from any courses in the University approved by the student’s advisor. Remarks: The student must consult his or her advisor to determine which courses, in addition to the required courses listed above, satisfy the requirements for a statistics major. The following courses are not acceptable...
for credit toward graduation, unless a student has passed the course before declaring a statistics major: MAC 2233, STA 1013, STA 2023, STA 3033, STA 3111, STA 3112, STA 2122, STA 3123, STA 3145 and QMB 3200 (College of Business Administration).

Combined BS/MS in Statistics

To be considered for admission to the combined bachelor's/master's degree program, students must have completed at least 75-90 credits in the bachelor's degree program at FIU and meet the admissions criteria for the graduate degree program to which they are applying. Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor's degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor's degree program. Upon conferral of the bachelor's degree, the student will be granted graduate status and be eligible for graduate assistantships. Only 5000-level or higher courses, and no more than the number of credits specified by the program catalog, may be applied toward both degrees.

Admission Requirements

- Current enrollment in the first semester of the senior year Bachelor's Degree Program in Statistics at FIU.
- Completed or enrolled in at least 75-90 undergraduate credits hours
- Current GPA of 3.25 or higher
- Official GRE scores (quantitative and verbal)

Courses and other General Requirements

Students enrolled in the program may count up to 9 hours as credits for both the undergraduate and graduate degree programs. These courses must be taken at least at the 5000 level and can be chosen from the following list (amongst others):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 5206</td>
<td>Design of Experiments I</td>
</tr>
<tr>
<td>STA 5236</td>
<td>Regression Analysis</td>
</tr>
<tr>
<td>STA 5507</td>
<td>Nonparametric Methods</td>
</tr>
<tr>
<td>STA 5666</td>
<td>Advanced Quality Control</td>
</tr>
<tr>
<td>STA 5207</td>
<td>Topics in Design of Experiments</td>
</tr>
<tr>
<td>STA 7707</td>
<td>Multivariate Methods I</td>
</tr>
<tr>
<td>STA 7708</td>
<td>Multivariate Methods II</td>
</tr>
</tbody>
</table>

Students who count cross listed courses towards the degree will not get credit for both the 4000 level and the 5000 level course. In fact, the students will not be allowed to take both the courses.

In addition, as part of earning the MS degree the students are required to take the following core courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 6244</td>
<td>Data Analysis I</td>
</tr>
<tr>
<td>STA 6247</td>
<td>Data Analysis II</td>
</tr>
<tr>
<td>STA 6326</td>
<td>Mathematical Statistics I</td>
</tr>
<tr>
<td>STA 6327</td>
<td>Mathematical Statistics II</td>
</tr>
</tbody>
</table>

The BS/MS program is designed to be a continuous program. However, upon completion of all the requirements of the undergraduate degree, students will receive the BS degree. Students in this program have up to one year after receipt of the bachelor's degree to complete the MS degree. Students who fail to meet the post BS requirement or who elect to leave the combined program at any time and earn only the BS degree will have the same access requirements to regular graduate programs as any other student but will not be able to use the 9 credits for both the bachelor's and master's degree.

Students enrolled in the program must maintain an overall GPA of 3.0 or higher and must get a minimum grade of "B" in all the core courses. Upon completion of the entire 4+1 program, students must have accumulated a minimum of 30 hours of credits at the graduate (5000+) level. In addition, to get the MS degree, the students will also be required to take a comprehensive examination or do a thesis. Students opting for the comprehensive exam will be required to take an additional 6 hours of credits at the graduate (5000+) level. All students enrolled in the program will be expected to attend the departmental seminars.

Minor in Statistics

Lower or Upper Division Preparation: (3 or 4)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC 2312</td>
<td>Calculus II</td>
</tr>
<tr>
<td>STA 2023</td>
<td>Statistics for Business and Economics</td>
</tr>
<tr>
<td>STA 2122</td>
<td>Introduction to Statistics I</td>
</tr>
<tr>
<td>STA 3111</td>
<td>Statistics I</td>
</tr>
</tbody>
</table>

Upper Division Program: (12)

Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 3163</td>
<td>Statistical Methods I</td>
</tr>
<tr>
<td>STA 3164</td>
<td>Statistical Methods II</td>
</tr>
</tbody>
</table>

Two additional courses from the following list:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 3033</td>
<td>Introduction to Probability and Statistics for CS</td>
</tr>
<tr>
<td>STA 4321</td>
<td>Introduction to Mathematical Statistics I</td>
</tr>
<tr>
<td>STA 4322</td>
<td>Introduction to Mathematical Statistics II</td>
</tr>
<tr>
<td>STA 4202</td>
<td>Introduction to Design of Experiments</td>
</tr>
<tr>
<td>STA 4234</td>
<td>Introduction to Regression Analysis</td>
</tr>
<tr>
<td>STA 4502</td>
<td>Introduction to Nonparametric Methods</td>
</tr>
<tr>
<td>STA 4664</td>
<td>Statistical Quality Control</td>
</tr>
</tbody>
</table>

Remarks: No courses in statistics, mathematics or computer sciences can be applied to more than one minor in these disciplines, nor can courses used to satisfy major requirements be used towards minor requirements. In the case where a course is required for both a major in one area and a minor in another, the student should see his or her advisor for an appropriate substitution for the requirement of the minor.

Certificate Program in Actuarial Studies

The department offers a certificate in Actuarial Studies. For further information refer to the Certificate section at the end of the College of Arts and Sciences' section.
Course Descriptions
Definition of Prefixes
F-Fall semester offering; S-Spring semester offering; SS-Summer semester offering.

MAC 1105 College Algebra (3). Operations on polynomials, rational expressions, radicals; lines, circles; inverse functions, exponential and logarithmic functions; systems of equations and inequalities. Students cannot receive credit for both this course and MAC 1147. Prerequisites: MAT 1033 or adequate and recent placement test score. (F,S,SS)

MAC 1114 Trigonometry (3). Trigonometric functions, identities, conditional equations, polar coordinates, vectors, polar graphs, complex numbers, DeMoivre’s Theorem, conic sections. Student cannot receive credit for both this course and MAC 1147 Pre-Calculus. Prerequisite: Grade of “C” or higher in MAC 1105. (F,S,SS)

MAC 1140 PreCalculus Algebra (3). Covers polynomial, rational, exponential and logarithmic functions: zeros of polynomials; conic sections; determinant and cramer’s rule; sequences and series; induction; binomial theorem. Prerequisites: MAC 1105 with “C” or better or adequate placement test score.

MAC 1147 Pre-Calculus Algebra and Trigonometry (4). Polynomials, Rational, Exponential and Logarithmic Functions, Trigonometry, Conic Sections, Cramer’s Rule, Sequences and Series, Induction, Binomial theorem. Prerequisites: Two years of high school algebra and adequate placement test score. (F,S,SS)

MAC 2233 Calculus For Business (3). A one semester introduction to the basic notions of calculus. Specific topics include: Differential Calculus using polynomial, exponential and logarithmic functions, and its application to optimization; integral calculus with area and probability applications. Prerequisites: Grade of “C” or higher in MAC 1105 or MAC 1147 or adequate placement test score. (F,S,SS)

MAC 2241 Calculus 1 for Biology (4). Emphasis on applications to biological systems. Concepts of calculus will be developed together with solutions, techniques of both analytical and numerical nature. Prerequisite: MAC 1147.

MAC 2241L Lab for Calculus 1 for Biology (1). Review of numerical methods used in calculus 1 by students in QBIC program. Prerequisite: Permission of the department.

MAC 2242 Calculus 2 for Biology (4). A continuation of Calculus 1 for Biology. Covers calculus 2 concepts with emphasis on biological applications. A portion of the course deals with differential equations. Prerequisite: MAC 2241.

MAC 2242L Lab for Calculus 2 for Biology (1). Review of numerical methods in calculus 2 by students in QBIC program. Prerequisite: Permission of the department.

MAC 2311 Calculus I (4). Limits, derivatives and their formulas, applications of derivatives, introduction to anti derivatives, introduction to parametric curves. Prerequisites: Grade of “C” or higher in Trigonometry or Pre-calculus or adequate placement test score. (F,S,SS)

MAC 2312 Calculus II (4). Applications of the integral, integration techniques, improper integrals, Riemann sums, the integral, Fundamental Theorem of Calculus, infinite
series, Taylor series, polar coordinates, parametric equations. Prerequisites: Grade of "C" or higher in Calculus I or AP Calculus credit. (F,S,SS)

MAC 2313 Multivariable Calculus (4). This course deals with the differential and integral calculus of real valued multivariable functions. The topics include: directional and partial derivatives, gradients, and their applications; differential calculus of vector valued functions; multiple, iterated, line, and surface integrals. Prerequisites: MAC 2312 or equivalent with a grade of 'C' or better. (F,S,SS)

MAD 1100 Mathematics for Information Technology (3). Introduction to discrete mathematical structures with emphasis on applications to information technology; binary numbers, logic, sets, functions, recursion, combinatorics, graph theory, Boolean algebra. Prerequisite: College Algebra.

MAD 2104 Discrete Mathematics (3). Sets, functions, relations, permutations, and combinations, propositional logic, matrix algebra, graphs and trees, Boolean algebra, switching circuits. Prerequisite: MAC 1105. (F,S,SS)

MAD 3305 Graph Theory (3). An introduction to the study of graphs. Topics include the following: paths and circuits, connectedness, trees, shortest paths, networks, planar graphs, the coloring of graphs, and directed graphs. Applications of graphs to computer science will be discussed. Prerequisites: COP 2210 or CGS 2420 and either MAS 3105 or MAD 2104. (F,S,SS)

MAD 3401 Numerical Analysis (3). Basic ideas and techniques of numerical analysis. Topics include: finite differences, interpolation, solution of equations, numerical integration and differentiation, applications, introduction to applied linear algebra. This course will make extensive laboratory use of the computer facility. Prerequisites: COP 2210 or CGS 2420 and MAC 2312. (F,S,SS)

MAD 3512 Theory of Algorithms (3). Strings, formal languages, finite state machines, Turing machines, primitive recursive and recursive functions, recursive unsolvability. Prerequisite: MAD 2104. Computer Science majors must also take COT 3420. (F,S,SS)

MAD 4203 Introduction to Combinatorics (3). A survey of the basic techniques of combinatorial mathematics. Topics will include the Pigeonhole Principle, Binomial Coefficients, Inclusion-Exclusion, Recurrence Relations, and Generating Functions. Prerequisites: MAC 2313 or both MAC 2312 and MAD 2104. (SS)

MAD 5405 Numerical Methods (3). Advanced ideas and techniques of numerical analysis for digital computation. Topics include: linear and non-linear systems, ordinary differential equations, continuous system modeling techniques, and languages. Prerequisites: MAS 3105 and MAP 2302.

MAE 3893 Mathematics Education Seminar (1). Provides students committed to Mathematics Education an early teaching experience and it will provide other students a low pressure opportunity to try out teaching. Prerequisite: MAC 2311.

MAE 3894 Early Teaching Experience (1). The goal of this course is to provide early in the program a unique opportunity for math education students to experience the
tastes, the challenges, and the rewards involved in the teaching of math. Prerequisite: MAC 2311.

MAP 2302 Differential Equations (3). An introduction to differential equations and their applications, based upon a knowledge of calculus. Topics to include: initial value problems of the first order, numerical solutions, systems of differential equations, linear differential equations, Laplace transforms, series solutions. Prerequisite: MAC 2312 with a grade of 'C' or better. (F,S,SS)

MAP 3103 Mathematical Modeling and Applications (3). A course to provide an understanding of the use of mathematical models in the description of the real world. Basic principles in the philosophy of formal model building as well as specific models will be considered. Prerequisites: MAS 3105 and either MAC 2313 or MAP 2302.

MAP 3103L Lab for Mathematical Modeling (1). Lab sessions complements the course of mathematical modeling (MAP 3103). Computer projects using "MATLAB" will be used. Prerequisite: MAP 2313. Corequisite: MAP 3103.

MAP 3104 Topics in Mathematical Modeling (3). A sequel to MAP 3103. In-depth study of techniques listed for MAP 3103. Prerequisite: MAP 3103.

MAP 3253 Mathematical Scientific Computation (3). To acquaint students with some mathematical programming skills involving numerical computation software like Mathematica, Matlab, scientific document processing LaTex, and data analysis tool Excel. Prerequisites: MAC 2312, MAS 3105.

MAP 4401 Advanced Differential Equations (3). A second course in differential equations. Topics may include: Bessel functions and other special functions arising from classical differential equations, Sturm-Liouville problems, partial differential equations, transform techniques. Prerequisites: MAP 2302 and MAC 2313. (S)

MAP 4401L Lab for Advanced Differential Equations (1). Lab sessions complement the course of advanced differential equations (MAP 4401). Computer projects using "MATLAB" will be used. Prerequisites: MAP 2302, MAC 2313. Corequisite: MAP 4401.


MAP 4634 Quantitative Risk Management (3). Interdisciplinary course with a strong quantitative approach to the risk management process of small and big businesses. Prerequisites: MAC 2313, MAP 2302, MAS 3105.

MAP 5117 Mathematical and Statistical Modeling (3). Study of ecological, probabilistic, and various statistical models. Prerequisites: COP 2210, MAC 2313, MAS 3105; and STA 3033 or STA 3164 or STA 4322.

MAP 5204 Optimization and Linear Algebra (3). Vectors, Euclidean spaces, operations on matrices, rank, determinants, linear and quadratic programming, Kuhn,
Tucker techniques for constrained optimization. Prerequisite: MAC 2313.

MAP 5236 Mathematical Techniques of Operations Research (3). This course surveys the mathematical methods used in operations research. Topics will be chosen from linear programming, dynamic programming, integer programming, network analysis, classical optimization techniques, and applications such as inventory theory. Prerequisites: MAP 5117 and MAS 3105 and either CGS 3420 or COP 2210.

MAP 5255 Mathematical Scientific Computation (3). Programming in Matlab, Graphics in Matlab, Creating GUIs in Matlab, Simulink. Prerequisites: MAC 2313, MAP 2302, MAS 3105.

MAP 5316 Ordinary Differential Equations (3). Existence and uniqueness theorem, matrix formulation, physical applications, regular singular points, autonomous systems, Laplace transform, special topics. Prerequisites: MAA 3200, MAA 4402 and MAS 3105.

MAP 5317 Advanced Differential Equations for Engineers (3). Topics may include Bessel Functions and other special functions arising from classical differential equations, Sturm-Liouville problems, partial differential equations, transform techniques. Credit may not be counted for both MAP 4401 and MAP 5317. Credit for MAP 5317 may not be applied toward the Master’s degree in Mathematical Sciences. Prerequisites: MAC 2313 and MAP 2302.

MAP 5326 Partial Differential Equations (3). Basic concepts of first and second order PDE’s, application to optics and wave fronts, Cauchy problem, Laplace equation, Green’s function, Dirichlet problem, heat equation. Prerequisite: MAA 4211.

MAP 5407 Methods of Applied Analysis (3). Convergence, fixed point theorems, application to finding roots of equations, normed function spaces, linear operators, applications to numerical integration, differential and integral equations. Prerequisites: MAA 4211, MAP 2302, and MAS 3105.

MAP 5415 Introduction to Fourier Analysis (3). Basic real analysis, and measure theory, LP spaces and convolution, the Fourier transform in L², Plancherel theorem, application to differential equations and wavelets. Prerequisites: Advanced Calculus, Linear Algebra.

MAP 5467 Stochastic Differential Equations and Applications (3). Review of measure theory, stochastic processes, Ito Integral and its properties, martingales and their generalizations, stochastic differential equations, diffusions. Applications to boundary value problems and finance. Prerequisites: MAS 3105, MAP 4401, MAA 4211, MAA 5616 or permission of instructor.

MAS 3105 Linear Algebra (3). An introduction to the topics in linear algebra most often used in applications. Topics include: matrices and their applications; simultaneous linear equations and elementary operations; linear dependence; vector spaces; rank and inverses; inner products and ‘best’ approximations; numerical solutions of simultaneous linear equations; eigen-values and eigenvectors; iterative methods for calculating eigenvalues; and systems of linear equations. Prerequisite: MAC 2312. (F,S,SS)

MAS 3931 Topics in Actuarial Mathematics (1). Topics related to calculus/linear algebra such as mono-tone sequences, least upper bound, complex arithmetic, solid analytic geometry, linear transformations. Mathematics involved in insurance. Prerequisite: Admission to Actuarial Studies Certificate program.

MAS 4203 Number Theory (3). Topics to be discussed are selected from the following: congruencies, Diophantine equations, distribution of primes, primitive roots, quadratic reciprocity, and classical theorems of number theory. Prerequisites: MAA 3200 or MAS 3105 or MTG 3212. (SS)

MAS 4301 Algebraic Structures (3). An introduction to abstract mathematical structures of modern algebra. Fundamental concepts of groups, rings, and fields will be studied. Note: the student must complete MAA 3200 before attempting this course. Prerequisites: MAS 3105 and MAA 3200. (S)

MAS 4302 Topics in Algebraic Structures (3). A sequel to Algebraic Structures. Topics may include: a continuation of the study of groups, rings and/or fields; polynomial domains; Euclidean domains; and Galois theory. Prerequisite: MAS 4301.

MAS 4310 Introduction to Algebraic Geometry (3). Introduction to the theory of affine and projective algebraic varieties over algebraically closed ground field. Various examples are discussed. Prerequisites: MAS 4301, MAA 4402.

MAS 5145 Applied Linear Algebra (3). Vector spaces and linear maps, solutions of linear systems, orthogonal projection and QR factorization, determinant and eigenvalues of a matrix. Prerequisites: MAS 3105 and MAA 3200.

MAS 5311 Graduate Algebra (3). A study of the basic material on groups, rings and vector spaces. Topics include the Jordan-Holder theorem, structure of modules over Euclidean domains and canonical forms of matrices. Prerequisites: MAS 4301 or equivalent.

MAS 5312 Galois Theory (3). Extension fields, ruler and compass constructions, fundamental theorem of Galois Theory, cyclotomic and cyclic extensions, solutions of equations by radicals, selected topics. Prerequisites: MAS 5311 or permission of the instructor.

MAS 5315 Algebraic Geometry (3). Introduction to the theory of affine and projective schemes, coherent sheaves and sheaf cohomology. Application to studying algebraic varieties. Prerequisites: MAS 4301, MAA 4402.

MAT 1033 Intermediate Algebra (3). Serves as preparation for entry level mathematics courses. Topics include operations on algebraic expressions, solving equations and inequalities in one and two variables and graphing.

MAT 2949 Cooperative Education in Mathematical Sciences (1-3). One semester of full-time supervised work in an outside organization taking part in the University Coop program. A written report and supervisor evaluation will be required of each student. Prerequisites: Calculus I and COP 2210.
MAT 3905 Independent Study (VAR). Individual conferences, assigned readings, and reports on independent investigations.

MAT 3930 Special Topics (VAR). A course designed to give groups of students an opportunity to pursue special studies not otherwise offered.

MAT 3949 Cooperative Education in Mathematical Sciences (1-3). One semester of full-time supervised work in an outside organization taking part in the University Coop Program. Limited to students admitted to the Co-op Program. A written report and supervisor evaluation will be required of each student. Prerequisites: Calculus II and COP 2210.

MAT 4510 Problem Solving Seminar (3). To strengthen students ability in solving basic mathematics problems by teaching them more advanced techniques for dealing with challenging problems. Prerequisites: MAD 2104, MAC 2311, MAC 2312, MAC 2313, MAS 3105, MAA 3200, MTG 3212, MAS 4203 or permission of the instructor.

MAT 4905 Independent Study (VAR). Individual conferences, assigned readings, and reports on independent investigations.

MAT 4930 Special Topics (VAR). A course designed to give groups of students an opportunity to pursue special studies not otherwise offered.

MAT 4934 Senior Mathematics Seminar (1). An exploration of research topics in the student's subfield. Coursework will include a written report, oral presentation, and departmental major field test. Prerequisite: Senior standing.

MAT 4943 Mathematical Sciences Internship (VAR). A special program to encourage students to get on-the-job experience in computer sciences, statistics, or mathematics in an industrial enterprise, governmental agency or other organization. Requirements: minimum grade of 'B' or higher in all courses in the major area, and approval by Departmental Internship Committee. Application is required at least one term in advance of registration for this course.

MAT 4949 Cooperative Education in Mathematical Sciences (1-3). One semester of full-time supervised work in an outside organization taking part in the University Coop Program. Limited to students admitted to the Co-op Program. A written report and supervisor evaluation will be required of each student. Prerequisites: Calculus II, a statistics course, and COP 2210.

MAT 5907 Independent Study (VAR). Individual conferences, assigned reading, and reports on independent investigations.

MAT 5921 Training in Mathematical Exposition (1). Students prepare and present supervised lectures on undergraduate mathematical topics to fellow students. Prerequisite: Graduate standing.

MAT 5970 Master's Research (1-6). Research toward preparation of master's project. Prerequisite: Permission of graduate committee.

MGF 1106 Finite Mathematics (3). Study of concepts and applications involving finite mathematical processes such as sets, combinatorial techniques, formal logic, discrete probability, linear systems, matrices, linear programming. Prerequisite: Working knowledge of high school algebra. (F,S,SS)

MGF 1107 The Mathematics of Social Choice and Decision Making (3). Voting systems and their desirable properties. Weighted voting systems, fair division procedures, apportionment methods and game theory.

MHF 3404 History of Mathematics – GL (3). Development of mathematical thought through the ages. Topics may include equation solving, trigonometry, astronomy, and calculus. Prerequisite: MAC 2312. (S)

MHF 4102 Axiomatic Set Theory (3). Axioms of set theory, order and well-foundedness, cardinal numbers, ordinal numbers, axiom of choice, special topics. Prerequisites: MAA 3200 or permission of the instructor. (S, alternate years)

MHF 4302 Mathematical Logic (3). A course of study of formal logical systems and their applications to the foundations of mathematics. Topics to be selected from the following: definition of mathematical proofs; set theory; analysis formalized with the predicate calculus; theorem of Godel and Church; recursive function theory; and idealized computers. Prerequisites: MAA 3200 or MAD 3512. (S, alternate years)

MHF 4401 Topics in the History of Modern Mathematics (3). Riemannian geometry, relativity and other topics at discretion of instructor. Prerequisites: MAC 2313, MAS 3105.

MHF 5107 Graduate Set Theory (3). Zermelo-Frankel axioms, ordinals and cardinals, Godel's constructible universe, large cardinals, forcing and the independence of the Continuum Hypothesis and the Axiom of Choice. Prerequisites: MHF 4102 or MAA 4211 or permission of the instructor.

MHF 5306 Graduate Mathematical Logic (3). First order languages, construction of models from constants, advanced construction of models, non-standard models, recursion theory, RE sets, Turing degrees, oracle construction. Prerequisites: MHF 4302 or permission of the instructor.

MHF 5325 Theory of Recursive Functions (3). Turing machines, decision problems, coding, s-m-r theorem, Rice's and Myhill's theorems, oracles, degrees, finite and infinite injury constructions. Prerequisite: MHF 4302 or MGT 5420.

MTG 1204 Geometry for Education (3). Introduction for teachers to basic concepts of Euclidean geometry with ideas and activities adaptable to classroom. Students study and analyze pattern, learning and enhancing analytic, creative and visualization skills.

MTG 3212 College Geometry (3). A study of the basic structure of Euclidean geometry together with topics from advanced Euclidean geometry and non-Euclidean geometry. Prerequisites: Calculus II or permission of the instructor. (S)

MTG 4254 Differential Geometry (3). Hypersurfaces in Rⁿ. Geodesics and curvature. Parametrization of surfaces, abstract manifolds. Integration, surfaces with boundary,
MTG 4302 Topology (3). An introductory course in topology requiring a prerequisite knowledge of calculus. Topics to be discussed will be selected from the following: topological spaces, metric spaces, continuity, completeness, compactness, separation axioms, products spaces, subspaces, convergence, and homotopy theory. Prerequisites: MAC 2313, MAS 3105, and MAA 3200. (SS)

MTG 5326 Introduction to Algebraic Topology (3). Classification of surfaces, fundamental group, homotopy type, Van Kampen theorem, simplicial complexes, introduction to homology theory. Prerequisites: MAS 4301 and MTG 4302.

STA 1013 Statistics for Social Services (3). This is an elementary course in statistics, covering graphical and numerical condensation of data as well as the most basic parametric and non-parametric methods. Emphasis is placed on the interpretation of statistical results, rather than on ways to analyze experimental data. Prerequisite: High school algebra.

STA 1061 Introduction to SPSSX for Data Analysis (1). Data coding and entry for use on the mainframe. How to input data, create variables, select subsets of data. Use procedures such as: PRINT, FORMAT, MEANS, CORR, UNI-VARIATE and PLOT. Prerequisite: A course in statistics.

STA 1062 Introduction to SAS for Data Analysis (1). Data coding for entry use on the mainframe. SAS Data step to input data, create variables, select subsets of data, PROCs such as: LIST, FREQUENCIES, CROSSTABS, DESCRIPTIVES, MEANS and CORRELATIONS. Prerequisite: A course in statistics.

STA 2023 Statistics for Business and Economics (3). Starting with an introduction to probability, the course provides an introduction to statistical techniques used in management science. It includes descriptive statistics, probability distributions, estimation and testing of hypotheses. Subsequent credit for STA 2122 or STA 3111 will not be granted. Prerequisite: High school algebra. (F,S,SS)

STA 2122 Introduction to Statistics I (3). A course in descriptive and inferential statistics. Topics include: probability distribution of discrete and continuous random variables. Sampling distributions. Large sample estimation and hypothesis testing for means and proportions. Prerequisite: High school algebra. (F,S,SS)

STA 3033 Introduction to Probability and Statistics for CS (3). Basic probability laws, probability distributions, basic sampling theory, point and interval estimation, tests of hypotheses, regression and correlation. Prerequisite: MAC 2312. (F,S,SS)

STA 3060L Statistics Laboratory (1). A laboratory course designed to illustrate important statistical concepts through experiments. Data are analyzed using statistical software packages. Prerequisite or Corequisite: A statistics course.
STA 3951 Oral Presentations in Statistics (1). Students will communicate orally all stages of statistical analysis through a presentation in front of faculty and students. The problem must have a global component to be explained by the student. Prerequisites: ENC 3213 and STA 3164 or equivalent. (F,S,SS)

STA 4102 Introduction to Statistical Computing (3). Data manipulation and statistical procedures using popular software, simulation, and statistical algorithms. Prerequisites: STA 3112 or STA 3123 or STA 3164, and COP 2210.

STA 4173-HSC 4510 Statistical Applications in Health Care (3). A course in descriptive and inferential statistics for the Health Services. Topics include probability distributions, point and interval estimation, hypothesis testing, regression and correlation, and contingency table analysis. Prerequisites: STA 1013 or equivalent college mathematics course.

STA 4182 Statistical Models (3). This is a specialized course in the use of statistical models to represent physical and social phenomena. The emphasis is on providing tools which will allow a researcher or analyst to gain some insight into phenomena being studied. An introductory knowledge of probability theory and random variables is assumed. Specific topics include: introduction to discrete and continuous probability distributions, transformation of variables, approximation of data by empirical distributions, central limit theorem, propagation of moments, Monte Carlo simulation, probability plotting, testing distributional assumptions. Prerequisites: STA 3033 or STA 4321.

STA 4202 Introduction to Design of Experiments (3). Completely randomized, randomized block, Latin square, factorial, nested and related designs. Multiple comparisons. Credit will not be given for both STA 4202 and STA 5206. Prerequisites: STA 3163 or STA 3112 or STA 3123 or STA 4322.

STA 4321-STA 4322 Introduction to Mathematical Statistics I and II (3-3). This course presents an introduction to the mathematics underlying the concepts of statistical analysis. It is based on a solid grounding in probability theory, and requires a knowledge of single and multivariable calculus. Specific topics include the following: basic probability concepts, random variables, probability densities, expectations, moment generating functions, sampling distributions, decision theory, estimation, hypothesis testing (parametric and non-parametric), regression, analysis of variance, and design of experiments. Prerequisite: MAC 2313. (F,S)

STA 4234 Introduction to Regression Analysis (3). Multiple and polynomial regression, residual analysis, model identification and other related topics. Credit will not be given for both STA 4234 and STA 5236. Prerequisites: STA 3112 or STA 3123 or STA 3164.

STA 4502 Introduction to Non-parametric Methods (3). Sign, Mann-Whitney U, Wilcoxon signed rank, Kruskal-Wallis, Friedman and other distribution-free tests. Rank correlation, contingency tables and other related topics. Credit for both STA 4502 and STA 5507 will not be granted. Prerequisite: A course in statistics.

STA 4603-STA 4604 Mathematical Techniques of Operations Research I and II (3-3). An introduction to those topics in mathematics associated with studies in operations research. Topics include the following: linear programming and related topics, dynamic programming, queuing theory, computer simulation, network analysis, inventory theory, decision theory, integer programming. Prerequisites: MAS 3105 and either STA 3033 or STA 4322.

STA 4664 Statistical Quality Control (3). This course presents the simple but powerful statistical techniques employed by industry to improve product quality and to reduce the cost of scrap. The course includes the use and construction of control charts (means, percentages, number defectives, ranges) and acceptance sampling plans (single and double). Standard sampling techniques such as MIL STD plans will be reviewed. Prerequisite: A course in statistics.

STA 4905 Independent Study (1-6). Individual conferences, assigned readings, and reports on independent investigations.

STA 4930 Special Topics (1-6). Designed to give students an opportunity to pursue special studies not otherwise offered. May be repeated.

STA 4949 Cooperative Education in Statistics (1-3). One semester of either part-time or full-time work, in an outside organization. Limited to students admitted to the Co-op program. A written report and supervisor evaluation are required of each student. Prerequisites: STA 3164, STA 4322 and permission of Chairperson.

STA 5065L SAS Data Analysis Lab (1). Entering data, descriptive statistics, graphing data, crosstabulations, t-tests, correlation and regression, and analysis of variance. Prerequisites: A statistics course and graduate standing or permission of the instructor.

STA 5105L SPSS Data Analysis Lab (1). Topics include: Entering data from various sources, data checking, descriptive statistics, graphing data, cross tabulations, tests, correlation and regression, and analysis of variance. Prerequisites: A statistics course or concurrent enrollment in a statistics course, and graduate standing or permission of the instructor. (F,S,SS)

STA 5106 Intermediate Statistics I (3). Power, measures of assoc., measurement, ANOVA: one-way and factorial, between and within subjects expected mean squares, planned comparisons, a-priori contrasts, fixed, random, mixed models. This course may be of particular interest to behavioral sciences. Prerequisites: STA 3111 or STA 3123 or STA 3033; and graduate standing. (F)

STA 5107 Intermediate Statistics II (3). Correlation and regression both simple and multiple, general linear model, analysis of covariance, analysis of nominal data, analysis of categorical data. This course may be of particular interest to behavioral sciences. Prerequisite: Permission of the instructor. (S)

designs. Covariance analysis. Prerequisites: STA 3112 or STA 3123 or STA 3163 or STA 4322 or equivalent.

**STA 5206 Design of Experiments I (3).** Design and analysis of completely randomized block, Latin square factorial, nested experiments. Multiple comparisons. Credit for only one of three STA 4202, STA 5126, and STA 5206 courses will be granted. Prerequisites: STA 3033 or STA 3164 or STA 4322 or (STA 3163 and STA 4321).

**STA 5207 Topics in Design of Experiments (3).** This applied course in design of experiments covers topics such as split-plot design, confounding, fractional replication, incomplete block designs, and response surface designs. Prerequisite: STA 5206.

**STA 5236 Regression Analysis (3).** Simple, multiple and polynomial regression, analysis of residuals, model building and other related topics. Credit for both STA 4234 and STA 5236 will not be granted. Prerequisites: STA 3112 or STA 3123 or STA 3164, or STA 6167.

**STA 5446-STA 5447 Probability Theory I and II (3-3).** This course is designed to acquaint the student with the basic fundamentals of probability theory. It reviews the basic foundations of probability theory, covering such topics as discrete probability spaces, random walk, Markov Chains (transition matrix and ergodic properties), strong laws of probability, convergence theorems, and law of iterated logarithm. Prerequisite: MAC 2313.

**STA 5507 Nonparametric Methods (3).** Distribution-free tests: sign, Mann-Whitney U, Wilcoxon signed rank, Kruskal-Wallis, Friedman, etc. Rank correlation, contingency tables and other related topics. Credit for both STA 4502 and STA 5507 will not be granted. Prerequisite: A course in statistics.

**STA 5666 Advanced Statistical Quality Control (3).** Review of statistical methods useful in quality improvement. Statistical process control. Taguchi’s and Deming’s philosophies. Control charts. Process capability analysis. Acceptance sampling plans. Prerequisites: STA 3033 or STA 3163 or STA 4321 or equivalent.

**STA 5676 Reliability Engineering (3).** The course material is designed to give the student a basic understanding of the statistical and mathematical techniques which are used in engineering reliability analysis. A review will be made of the basic fundamental statistical techniques required. Subjects covered include: distributions used in reliability (exponential, binomial, extreme value, etc.); tests of hypotheses of failure rates; prediction of component reliability; system reliability prediction; and reliability apportionment. Prerequisite: STA 4322.

**STA 5800 Stochastic Processes for Engineers (3).** Probability and conditional probability distributions of a random variable, bivariate probability distributions, multiple random variables, stationary processes, Poisson and normal processes. Prerequisites: MAC 2313, MAP 2302, STA 3033.

**STA 5826 Stochastic Processes (3).** This course is intended to provide the student with the basic concepts of stochastic processes, and the use of such techniques in the analysis of systems. Subjects include: Markov Processes, queuing theory, renewal processes, birth and death processes, Poisson and Normal processes. Applications to system reliability analysis, behavioral science, and natural sciences will be stressed. Prerequisite: STA 5447.

**STA 5906 Independent Study (1-6).** Individual conferences, assigned reading, and reports on independent investigation.