College of Engineering and Computing

Interim Dean Ranu Jung
Director, School of Computing and Information Sciences S. S. Iyengar
Director, OHL School of Construction Irtishad U. Ahmad
Associate Dean for Academic Affairs Anthony J. McGoron
Associate Dean for Research Arvind Agarwal

The College of Engineering and Computing is committed to educate professionals who can serve industry and the community at large in a wide variety of fields, as well as conduct innovative basic and applied research that meets the technical needs of industry and government, improves the quality of life, and contributes to the economic viability of Florida, the Nation, and the world.

The College of Engineering and Computing consists of two schools: School of Computing and Information Sciences and OHL School of Construction; and four academic departments: Biomedical Engineering, Civil and Environmental Engineering, Construction Management, Electrical and Computer Engineering, and Mechanical and Materials Engineering. These academic departments offer programs leading to the Bachelor of Science, Master of Science, and Doctor of Philosophy degrees.

The College has two institutes and thirteen centers supporting its academic and research programs. The institutes are the Advanced Materials Engineering Research Institute (AMERI) and the Telecommunications and Information Technology Institute (IT2). The centers are the Bioinformatics Research Group (BioRG), Center for Advanced Distributed Systems Engineering, Center for Advanced Technology and Education (CATE), Center for Diversity in Engineering and Computing (CDEC), Center for Emerging Technology for Advanced Information Processing (IT2), Center for Study of Matter at Extreme Conditions (CeSMSEC), Engineering Information Center (EIC), Engineering Manufacturing Center (EMC), Eugenio Pino and Family Global Entrepreneurship Center, High Performance Database Research Center and the Lehman Center for Transportation Research (LCCTR). Two major university centers, the Applied Research Center (ARC) and International Hurricane Research Center (IHR), work very closely with the College of Engineering and Computing with many joint appointments at the faculty level.

The College has created an open-access Motorola Nanofabrication Research Facility to conduct research in nanoelectronics, bio/nanosensors and nanomaterials. In addition, the FIU College of Engineering and Computing has developed many collaborations with the industry and hospitals in Florida and across the nation.

The programs of the College are directed towards the practical use of scientific, engineering, and technical principles to meet the objectives of industry, business, government and the public.

The College provides each student with the opportunity to develop a high level of technical skills and to obtain an education, which will prepare him or her for a rewarding career and personal growth. Underlying the programs of the College is a recognition that the growing impact of technology upon the quality of life is increasing and that the proper application of technology is critical to meeting current and emerging human needs. The College faculty is actively engaged with business, industry and government. Faculty members also participate in a variety of basic and applied research projects in areas such as energy, transportation, solid waste disposal, biotechnology, biomedical devices and instrumentation, computer engineering, artificial intelligence, manufacturing, robotics telecommunications, micro-electronics, nano-electronics, nanotechnology, neuro-sciences/engineering, modeling and simulation, construction engineering, materials, structural systems, virtual prototyping, systems modeling, information technology, environmental sciences and engineering, image processing, engineering education, etc.

Doctor of Philosophy

The College offers Doctor of Philosophy degrees in Biomedical Engineering, Civil Engineering, Computer Science, Electrical and Computer Engineering, Mechanical Engineering, and Materials Science and Engineering.

Areas of study in Biomedical Engineering include:
- Biomechanics, Biomaterials, and Medical Devices
- Bioinstrumentation, and Biomedical Image/Signal Processing
- Drug Delivery and Tissue Engineering
- Medical Physics and Nuclear Medicine
- Bio-nanotechnology and Systems Biology

Areas of study in Civil Engineering include:
- Transportation Engineering
- Environmental Sciences and Engineering
- Structural Engineering
- Water Resources Engineering
- Geotechnical Engineering
- Construction Engineering and Management

Areas of study in Computer Science include:
- Networking and distributed systems, wireless networks, mobile and ubiquitous computing, routers, and switches, system modeling.
- Operating systems, distrusted computing, storage systems, virtualization, security, and real-time systems.
- Database systems, including distributed databases, information retrieval in heterogeneous databases, multimedia databases, data mining, and digital libraries.
- Software engineering, including formal methods, software testing techniques, software architecture, software security, software design, model-driven software development, and grid computing.
- Theory, including algorithms and data structures, programming languages, program verification, and logic.
- Bioinformatics and Computational Biology.
- Artificial Intelligence, including machine learning, expert systems, intelligent agents, affective computing, cognitive science, intelligent human-computer interaction, social informatics.

Areas of study in Electrical and Computer Engineering include:
- Biomedical Sciences and Engineering
• Micro-Electronics, Nano-Electronics and Photonics
• Computer Engineering
• Systems and Controls
• Electromagnetics and Nanomagnetics
• Power Systems
• Telecommunications and Networking
• Digital Signal and Image Processing

Areas of study in Mechanical and Materials Engineering include:
• Thermo/Fluids Sciences
• Biomedical Engineering
• Mechanics of Materials
• Nanostructured Materials
• Ceramics and Electronic Materials
• CAD/CAM
• Manufacturing
• Modeling and Simulation
• Nano Devices
• Applied Mechanics

Master of Science Degree Programs

The College offers Master of Science degrees in:
• Biomedical Engineering
• Civil Engineering
• Computer Engineering
• Computer Science
• Construction Management
• Cybersecurity
• Electrical Engineering
• Engineering Management
• Environmental Engineering
• Information Technology
• Logistics Engineering
• Materials Science and Engineering
• Mechanical Engineering
• Telecommunications and Networking

Corporate and Global Programs

In partnership with national and international corporations and universities, the College of Engineering and Computing offers several of its graduate programs off-campus. These programs are offered at the partner’s site both in the USA and abroad, particularly Latin America, and the Caribbean.

Current Global Programs offered include MS in Engineering Management with specializations in Biomedical Technology, Information Systems, and Manufacturing, MS in Electrical Engineering, and BS in Computer Science. Negotiations are underway to offer MS in Construction Management, and MS in Telecommunications and Networking.

Students enrolled in these programs are considered regular FIU students; hence, they must meet university admission requirements and are given full access to the university’s facilities.

Distance Learning Education

Florida Engineering Education Delivery Systems (FEEDS) provides graduate engineering courses to place-bound professionals via CD, videotape, ITFS, and web-based asynchronous learning modules.

Research Centers and Institutes

Research spans from single discipline to multidisciplinary research in the College of Engineering and Computing. Thus, the College, through its research centers and institutes, has established many collaborative and cooperative partnerships with other units in the university as well as with local industry.

The research units involved in these efforts include:
• Advanced Materials Engineering Research Institute (AMERI)
• Applied Research Center (ARC)
• Bioinformatics Research Center (BioRG)
• Center for Advanced Distributed Systems Engineering
• Center for Advanced Technology and Education (CATE)
• Center for Diversity in Engineering and Computing
• Center for Emerging Technology for Advanced Information Processing and High-Confidence Systems (CREST)
• Center for the Study of Matters at Extreme Conditions (CeSMEC)
• Distributed Multimedia Information Systems Laboratory
• Engineering Manufacturing Center (EMC)
• Engineering Information Center (EIC)
• Eugenio Pino and Family Global Entrepreneurship Center
• High Performance Database Research Center
• International Hurricane Research Center (IHRC)
• Lehman Center for Transportation Research (LCTR)
• Motorola NanoFabrication Research Facility
• Micro-Electronics, Nano-Electronics and Photonics
• Computer Engineering
• Systems and Controls
• Electromagnetics and Nanomagnetics
• Power Systems
• Telecommunications and Networking

Academic Support Services

The area of academic support services is responsible for the coordination of academic advising and student services the College of Engineering and Computing. Students are informed of educational opportunities such as scholarships, tuition waivers, and campus resources. It serves as a liaison between the academic departments and the student support services university wide and facilitates the registration process in order to make sure that the students adhere to the College guidelines.

Admission Requirements

Prospective students seeking a graduate degree in the College must satisfy all university admission requirements as well as the specific program requirements. Each department evaluates candidates for admission to its programs. Prospective students should refer to the appropriate section of the catalog for specific admission requirements and for contact information of the Graduate Programs Directors.

Biomedical Engineering: (305) 348-3019
 Dr. Malek Adjouadi
Civil and Environmental Engineering: (305) 348-3837
 Dr. L. David Shen
OHL School of Construction: (305) 348-3172
 Dr. Syed Ahmed
committed to the principle of taking positive steps with respect to race, color, creed, age, handicap, sex, to opportunity practices, which conform to all laws against Florida International University and the College adhere advance notice.
The Florida Legislature. Changes may be made without respond to the mandates of the FIU Board of Trustees and serve the needs of the University's various publics, and to The programs, policies, requirements and regulations timely graduation. Students must become familiar with all guidelines to protect the student's rights and to ensure a The University, the University Graduate School, and the College must meet with the Department's Graduate Department-Specific Information

Admitted Student Procedures
A student who has been accepted to a degree program in the College must meet with the Department's Graduate Program Director prior to the enrollment in the first class. Enrolled students must choose an advisor during their first semester in the program. Continued contact (at least once per semester) with the advisor is required to review progress and select courses for each succeeding semester. Courses taken without the required prerequisites and co-requisites, or without the consent of the advisor, will be dropped automatically before the end of the term, resulting in a grade of “DR” or “DF”.

Scientific Laboratory Fees are assessed for certain courses where laboratory classes are part of the curriculum. Specific information on scientific laboratory fees may be obtained from the University Financial Services.

Fellowships, Assistantships, and Scholarships
The College of Engineering and Computing offers a variety of fellowships, assistantships, and scholarships to qualified students. These awards are highly competitive; hence, prospective students are urged to apply and submit all required records and scores as early as possible so they can be considered for these awards.

The amounts of these awards vary depending on the type of the award, but they may provide full tuition and a monthly stipend. Visit: www.eng.fiu.edu for additional information.

Policies, Requirements, and Regulations
The University, the University Graduate School, and the College of Engineering and Computing have a set of guidelines to protect the student's rights and to ensure a timely graduation. Students must become familiar with all University, the University Graduate School, and College's graduate procedures. These procedures are described in the University's Student Handbook, this catalog and at http://gradschool.fiu.edu.

The programs, policies, requirements and regulations listed in the catalog are continually subject to review to serve the needs of the University's various publics, and to respond to the mandates of the FIU Board of Trustees and the Florida Legislature. Changes may be made without advance notice.

Florida International University and the College adhere to opportunity practices, which conform to all laws against discrimination and are committed to non-discrimination with respect to race, color, creed, age, handicap, sex, marital status, or nationality. Additionally, the University is committed to the principle of taking positive steps necessary to achieve the equalization of educational and employment opportunities.

College of Engineering and Computing Dismissal Policy
A student who has been dismissed from the University for the first time may see the Graduate Program Director to begin the appeal procedure. The Director will determine if the student is eligible to appeal the dismissal or if there is a way to lift the dismissal. If the student is eligible, he or she must make an appointment to see the chairperson or associate chairperson. The student must bring a letter stating when he or she was dismissed the first time and what he or she is going to do to ensure that he or she is not dismissed a second time. If the chairperson determines that the student is worthy of reinstatement, he or she will prepare and sign a memo for the College Dean's consideration stating the conditions for the student to be reinstated. The student may be readmitted on academic probation upon the approval of the Dean of the University Graduate School. If the student does not meet these conditions, he or she will be dismissed a second and final time from the program. The student must also sign an agreement stating that he or she understands that the department will not allow a second reinstatement if the student is dismissed again.

Any student who is dismissed a second time from FIU will not be readmitted under any circumstances. Only a first dismissal appeal is considered in the College of Engineering and Computing, a second dismissal appeal will not be accepted.

Department-Specific Information
For additional information refer to your selected department in this catalog, or call the graduate program director of each department. As listed above.

Other Important Contact Information
Website: http://www.eng.fiu.edu
Admissions: http://gradschool.fiu.edu (305) 348-7442
College of Engineering and Computing-
Graduate Admissions (305) 348-3526
Campus Resources (305) 348-2973
Career Services (305) 348-1281
Financial Aid (305) 348-2489
University Graduate School (305) 348-2455
International Students and Scholars Services (305) 348-2421
Registrar's Office (305) 348-2320
Scholarships (305) 348-3526
Tuition Waivers (305) 348-3526
Engineering Management

Chin-Sheng Chen, Professor and Program Director
Shih-Ming Lee, Professor of Practice
Karen E. Schmahl, Professor of Practice

Affiliated and Research Faculty
Cecilia Alvarez-Ortiz, Affiliated Professor
Paul Bianco, Affiliated Professor
Seema Pissaris, Affiliated Professor
Jesus Sanchelima, Affiliated Professor

Master of Science in Engineering Management

The Master of Science in Engineering Management (MSEM) program develops future leaders of business and industry in an engineering and technological environment. The program blends a carefully chosen mix of graduate courses offered by the College of Engineering and Computing, the College of Business Administration, and the College of Law. The MSEM program is designed to offer a tailored degree for those engineers who would like to advance to managerial positions and wish to acquire the necessary knowledge and skills for success. The MSEM program includes coursework that simulates a business environment where students learn and apply engineering tools, managerial theories, and best practices to design and operate industrial systems. Students in the program are expected to acquire contemporary engineering management theories and techniques, and simultaneously build a solid technical foundation in a chosen engineering track.

Admission Policies

The applicant to the MSEM program must have a bachelor's degree in engineering or a closely related field from a regionally accredited institution with a minimum of “B” average in upper-level undergraduate work, or a graduate degree from an accredited institution. In addition, international graduate student applicants whose native language is not English are required to submit a score for the Test of English as a Foreign Language (TOEFL) or for the International English Language Testing System (IELTS). A total score of 80 on the iBT TOEFL or 6.5 overall on the IELTS is required. The applicant whose GPA does not meet the minimum GPA requirement may be considered for conditional admission. For such consideration, the applicant must submit (1) three letters of recommendation; (2) a resume including education, training, and employment history, practical and research experience (such as projects and publications), skills and other pertinent information; and (3) a statement of objective in which the applicant must clearly state his/her intended engineering track, in addition to other information.

Degree Requirements

The MSEM program requires 30 credit hours of course work including 9 credit hours of engineering management core courses, 9 credit hours of business electives and 12 credit hours of approved graduate-level electives from an engineering track.

Engineering Management Core Courses

Students in the Engineering Management program are required to take three courses (9 credit hours) to build an engineering management foundation that includes topics in engineering quality management, systems improvement, engineering project management, intellectual property issues, and business laws. The three core courses are:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIN 5226</td>
<td>Total Quality Management For Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6455</td>
<td>Advanced Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>LAW 5072</td>
<td>Business Law and Intellectual Property</td>
<td>3</td>
</tr>
</tbody>
</table>

Business Electives

Students in the program are required to take three courses (9 credit hours) to gain fundamental knowledge about management functions that includes topics in accounting, finance, organizational behavior, leadership, marketing, and operations management. Additional business electives may be considered subject to the Director's approval. A suggested list of business elective courses is given below:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACG 6026</td>
<td>Accounting for Managers</td>
<td>3</td>
</tr>
<tr>
<td>FIN 6406</td>
<td>Corporate Finance</td>
<td>3</td>
</tr>
<tr>
<td>MAN 6209</td>
<td>Organization Design and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MAR 6805</td>
<td>Marketing Management</td>
<td>3</td>
</tr>
<tr>
<td>MAN 6830</td>
<td>Organization Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>MAN 6501</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>EIN 5359</td>
<td>Industrial Financial Decisions</td>
<td>3</td>
</tr>
<tr>
<td>MAN 6167</td>
<td>Leadership in a Global Environment</td>
<td>3</td>
</tr>
</tbody>
</table>

Engineering Tracks

Students in the Engineering Management program must choose an engineering track from any academic unit in the College of Engineering and Computing. Within a chosen track, students are required to take four courses (12 credit hours) that meet the program’s technical requirement. These engineering electives are designed to broaden and deepen the students' understanding of engineering and technology development in a chosen track. Students should have a proper educational background in order to take elective courses. Additional tracks and elective courses may be available, subject to the approval of the Engineering Management program director.

Biomedical Engineering Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 5005</td>
<td>Applied Biomedical Engineering Principles</td>
<td>3</td>
</tr>
<tr>
<td>BME 5036</td>
<td>Biotransport Processes</td>
<td>3</td>
</tr>
<tr>
<td>BME 5105</td>
<td>Intermediate Biomaterials Science</td>
<td>3</td>
</tr>
<tr>
<td>BME 5316</td>
<td>Molecular Bioprocess Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 5340</td>
<td>Introduction to Cardiovascular Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 5560</td>
<td>Biomedical Engineering Optics</td>
<td>3</td>
</tr>
<tr>
<td>BME 5573</td>
<td>Nanomedicine</td>
<td>3</td>
</tr>
<tr>
<td>BME 5505C</td>
<td>Engineering Foundations of Medical Imaging Instrument</td>
<td>3</td>
</tr>
</tbody>
</table>
Computer Engineering Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EEL 5718 Computer Communication Network Engineering 3
EEL 5725 Hardware Description Languages (VHDL or Verilog) 3
EEL 5757 Real-Time DSP Implementations 3
EEL 6167 VLSI Design 3
EEL 6253 Computer Analysis of Power Systems 3
EEL 6505 Digital Signal Processing 3
EEL 6575 Data Communications Engineering 3
EEL 6681 Fuzzy System Design 3

Computer Science Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

CEN 5011 Advanced Software Engineering 3
COP 5725 Principles of Database Management Systems 3
COP 5614 Operating Systems 3
COT 5310 Theory of Computation I 3
COT 5407 Introduction to Algorithms 3

Construction Management Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

BCN 5716 Productivity in Construction 3
BCN 5626 Construction Cost Analysis & Control 3
BCN 5645 Construction Economic Analysis 3
BCN 5728 Principles of Construction Scheduling 3
BCN 5774 Topics in International Construction 3
BCN 6775 Decision & Risk Analysis in Construction 3
BCN 6916 Development in Construction Technology 3
CCE 5505 Computer Integrated Construction 3

Electrical Engineering Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EEE 5425 Introduction to Nanotechnology 3
EEL 5171 Advanced Systems Theory 3
EEL 5500 Digital Communication Systems I 3
EEL 5501 Digital Communication Systems II 3
EEL 6219 Electric Power Quality 3
EEL 6261 Power Systems Engineering 3
EEL 6443 Electro-Optical Devices and Systems 3
EEL 6505 Digital Signal Processing 3

Enterprise Systems Track

This track is designed for students who have a career interest in management of operations at the entire enterprise level. Systems engineering tools and information technology are applied to planning, modeling, analysis, design, and implementation of contemporary enterprise systems in any business sector. Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EGS 5620 Enterprise Systems Configuration 3
EGS 5621 Enterprise Systems Collaboration 3
EGS 5622 Enterprise Systems Integration 3
EGS 5623 Enterprise Systems Optimization 3
EIN 5346 Logistics Engineering 3
EIN 6133 Enterprise Engineering 3

Engineering Entrepreneurship Track

This track is designed for students who have a career interest in becoming an engineering entrepreneur who creates jobs in new business ventures or becoming an engineering manager who manages innovation working within a company. Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

EGN 6436 Manufacturing Process Design 3
EIN 5367 Design of Production Systems 3
EIN 6105 Technology Policies and Strategies 3
EIN 6160 Management of Innovation and Technology 3
EIN 6324 Technology Entrepreneurship 3
EIN 6325 Business Plan Development 3
EIN 6327 Entrepreneurship and New Venture Initiation 3
EIN 6329 Advanced Engineering Business Plan Development 3
EIN 6392 Product Design for Manufacturability and Automation 3

Environmental Engineering Track

Students in this track are required to take four courses from the following list with the approval of the Graduate Program Director and after meeting prerequisite requirements. Additional courses may be selected with approval of the program director.

ENV 5406 Water Treatment Systems and Design 3
ENV 5517 Design of Wastewater Treatment Plants 3
ENV 5666 Water Quality Management 3
CWR 5235 Open Channel Hydraulics 3
CWR 6125 Groundwater Hydrology 3
ENV 5104 Indoor Air Quality 3
ENV 5105 Air Quality Management 3
ENV 5347 Waste Incineration 3
ENV 5126 Particulate Air Pollution Control 3
ENV 5127 Gaseous Air Pollution Control 3
ENV 5356 Solid and Hazardous Waste 3
ENV 5027 Biomediation Processes 3
ENV 5335 Advanced Hazardous Waste Treatment Processes 3
ENV 5008 Appropriate Technologies for Developing Countries 3
ENV 5007 Environmental Planning 3
ENV 5519 Chemistry for Environmental Engineers 3
ENV 6045 Environmental Modeling 3
ENV 6070 Green Engineering 3
ENV 6614 Environmental Impact Assessment 3

Information Technology Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

CIS 5027 Computer Systems Fundamentals 3
CIS 5372 Fundamentals of Computer Security 3
CEN 5087 Software and Data Modeling 3
COP 5725 Principles of Database Management Systems 3
TCN 5030 Computer Communications and Networking Technology 3
EGS 5620 Enterprise Systems Configuration 3
EGS 5621 Enterprise Systems Collaboration 3
EGS 5622 Enterprise Systems Integration 3
EGS 5623 Enterprise Systems Optimization 3
EIN 6117 Advanced Industrial Information Systems 3
ESI 5602 Engineering Data Representation and Modeling 3
ESI 6601 Data Warehousing and Mining 3

Logistics Engineering Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

- EIN 5346 Logistics Engineering 3
- EIN 6133 Enterprise Engineering 3
- EIN 6336 Advanced Production Planning and Control 3
- EIN 6345 Inventory Control Systems 3
- ESI 5522 Simulation Models of Engineering Systems 3
- ESI 6316 Applications of OR in Manufacturing 3
- ESI 6470 Stochastic Optimization 3

Mechanical Engineering Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

- EGM 5346 Computational Engineering Analysis 3
- EGM 5354 Finite Element Methods Applications in ME 3
- EGM 5615 Synthesis of Engineering Mechanics 3
- EGM 6422 Advanced Computational Engineering Analysis 3
- EML 5103 Intermediate Thermodynamics 3
- EML 5152 Intermediate Heat Transfer 3
- EML 5505 Smart Machine Design and Development 3
- EML 5509 Optimization Algorithms 3
- EML 5530 Intermediate CAD/CAE 3
- EML 5606C Advanced Refrigeration and AC Systems 3
- EML 5709 Intermediate Fluid Mechanics 3
- EML 6725 Computational Fluid Dynamics 3

Operations Management of Orthotics and Prosthetics Track
Students in this track must take six credit hours of EGN 6940 Graduate Internship – Orthotics and Prosthetics Clinical Rotation or I&SE Internship (EIN 6940), and additionally are required to take at least six credit hours of courses from the following list. Additional courses may be selected with approval of the program director.

- EGN 5435 Product Modeling 3
- EGS 5620 Enterprise Systems Configuration 3
- EGN 6436 Manufacturing Process Design 3
- EGN 6438 Manufacturing Engineering 3
- EGN 6940 Graduate Internship – Orthotics and Prosthetics Clinical Rotation 1-6
- EIN 6133 Enterprise Engineering 3
- EIN 6160 Management of Innovation and Technology 3
- EIN 6324 Technology Entrepreneurship 3
- EIN 6336 Advanced Production Planning and Control 3
- EIN 6392 Product Design for Manufacturability and Automation 3
- EIN 6940 Industrial and Systems Engineering Internship 1-3

Production and Manufacturing Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

- EGN 6436 Manufacturing Process Design 3
- EGN 6437 Manufacturing Systems Design 3
- EIN 5332 Quality Engineering 3
- EIN 5367 Design of Production Systems 3
- EIN 6336 Advanced Production Planning and Control 3
- EIN 6345 Inventory Control Systems 3
- EIN 6392 Product Design for Manufacturability and Automation 3

Risk and Disaster Management Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

- BCN 5588 Vulnerability Analysis 3
- BCN 5589 Hazard Mitigation 3
- ENV 6614 Environmental Risk Assessment 3
- PHC 6251 Disaster and Emergency Epidemiology 3
- MAN 6706 Crisis Management 3
- MAP 6630 Numerical Analysis in Risk Analysis and Management 3
- MAP 6635 Risk Analysis and Management I 3
- MAP 6636 Risk Analysis and Management II 3

Structural/Wind/Construction Track
Students in this track are required to take four courses from the following four groups (one per group) with the approval of the Graduate Program Director and after meeting prerequisite requirements. Additional courses may be selected with approval of the program director.

Group 1
- CCE 5035 Construction Engineering Management 3
- CCE 5036 Advanced Project Planning for Civil Engineers 3

Group 2
- CES 5106 Advanced Structural Analysis 3
- EGM 5421 Structural Dynamics 3

Group 3
- CES 5715 Prestressed Concrete Design 3
- CES 5606 Advanced Structural Steel Design 3
- CES 6706 Advanced Reinforced Concrete Design 3
- EGN 5439 Design of Tall Buildings 3

Group 4
- CEG 5065 Geotechnical Dynamics 3
- CEG 6105 Advanced Foundations Engineering 3

Systems Engineering Track
Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

- EIN 5332 Quality Engineering 3
- EIN 5346 Logistics Engineering 3
- EIN 6133 Enterprise Engineering 3
Telecommunications Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCN 5010</td>
<td>Telecommunications Technology and Applications</td>
<td>3</td>
</tr>
<tr>
<td>TCN 5030</td>
<td>Computer Communications and Networking Technologies</td>
<td>3</td>
</tr>
<tr>
<td>TCN 5060</td>
<td>Telecommunications Software and Methodologies</td>
<td>3</td>
</tr>
<tr>
<td>TCN 5640</td>
<td>Telecommunications Enterprise Planning and Strategy</td>
<td>3</td>
</tr>
<tr>
<td>TCN 6210</td>
<td>Telecommunications Network Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>TCN 6430</td>
<td>Network Management and Control Standards</td>
<td>3</td>
</tr>
<tr>
<td>TCN 6450</td>
<td>Wireless Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>TCN 6880</td>
<td>Telecommunications Public Policy Development and Standards</td>
<td>3</td>
</tr>
</tbody>
</table>

Transportation Engineering Track

Students in this track are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTE 5205</td>
<td>Advanced Highway Capacity Analysis</td>
<td>3</td>
</tr>
<tr>
<td>TTE 5215</td>
<td>Fundamentals of Traffic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>TTE 5607</td>
<td>Transportation Demand Analysis</td>
<td>3</td>
</tr>
<tr>
<td>TTE 5805</td>
<td>Advanced Geometric Design of Highways</td>
<td>3</td>
</tr>
<tr>
<td>TTE 6257</td>
<td>Traffic Control Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>TTE 6506</td>
<td>Mass Transit Planning</td>
<td>3</td>
</tr>
<tr>
<td>CGN 5320</td>
<td>GIS Applications in Civil and Environmental Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Water Resources Engineering Track

Students in this track are required to take four courses from the following list with the approval of the Graduate Program Director and after meeting prerequisite requirements. Additional courses may be selected with approval of the program director.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWR 5140C</td>
<td>Ecolohy</td>
<td>3</td>
</tr>
<tr>
<td>CWR 5235</td>
<td>Open Channel Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>CWR 5251</td>
<td>Environmental Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>CWR 5535C</td>
<td>Advanced Modeling Applications in Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CWR 6117</td>
<td>Stochastic Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>CWR 6125</td>
<td>Groundwater Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>CWR 6126</td>
<td>Advanced Groundwater Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>CWR 6236</td>
<td>Engineering Sediment Transport</td>
<td>3</td>
</tr>
<tr>
<td>ENV 5666</td>
<td>Water Quality Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Master’s Project Option

Students in the Engineering Management graduate program may receive permission to conduct a master’s project of three credit hours within their chosen track to complete the degree program. The master’s project (EIN 6950) will replace one graduate elective course.

Grades and Credits

Students are required to maintain a GPA of 3.0. Courses with a grade below ‘C’ will not be counted toward the Master of Science degree in Engineering Management.

Transfer Credit

Students may receive permission to transfer up to a maximum of six semester credits provided that: (1) the courses were taken at the graduate level at an accredited college or university; (2) with a grade of ‘B’ or better; (3) the courses were judged relevant by the program director; (4) the credits were not used toward another degree; and (5) the credits will be no older than six years at the time of graduation. Students who already have earned (or are earning) a Master's degree that is closely related to his/her technical track (i.e., MSEM sub-plan) may transfer up to 12 semester hours to meet the track requirement, subject to the Program Director’s approval. No more than 12 semester hours taken at FIU as a non-degree seeking student may be counted toward the Engineering Management graduate program.

Time Limit

All works applicable to the Master of Science degree in Engineering Management, including transfer credits, must be completed within six years of conferral of the degree.

Combined BS in Biomedical Engineering/MS in Engineering Management (BSBME/MSEM)

Students who pursue a BS degree and have completed 75~90 credits in the undergraduate program of Biomedical Engineering with an overall GPA of 3.2 or higher, upon recommendation from three faculty members, apply to the department to enroll in the combined BSBME/MSEM program. Students must also submit an online application to the University Graduate School for admission to the MSEM program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor’s degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor's degree program. Upon conferral of the bachelor’s degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students enrolled in the combined degree program could count up to three BME graduate courses for both the BSBME electives and the MSEM electives, for a total saving of 9 credit hours. The following is a list of eligible BME graduate courses:
The combined BSME/MSEM program has been designed to be a continuous program. During this combined BSME/MSEM program, upon completion of all the requirements of the BSME program, students will receive their BSME degree. Students may elect to permanently leave the combined program and earn only the BSME degree. Students who elect to leave the combined program and earn only the BS degree will have the same access requirements to regular graduate programs as any other student, but will not be able to use the 9 credit hours in both the BSME and MSEM degrees.

For each of the graduate courses counted as credits for both BSME and MSEM degrees, a minimum grade of "B" is required. Only graduate courses with formal lecture can be counted for both degrees. The students are responsible for confirming the eligibility of each course with their undergraduate advisors.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.

Combined BS in Computer Engineering/MS in Engineering Management (BSCpE/MSEM)

Students, who are pursuing a Bachelor of Science degree in Computer Engineering and have completed at least 75-90 credits with a minimum of a 3.3 overall GPA may, upon recommendation from three ECE faculty members, apply to enroll in the combined BSCpE/MSEM program. Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor’s degree program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students enrolled in the combined degree program could count up to two Electrical Engineering graduate courses for both the BSCpE electives and the MSEM electives, for a total saving of 6 credit hours. A minimum grade of “B” is required graduate courses counted as credits for both BSCpE and MSEM degrees. Only 5000-level or higher courses may be applied toward both degrees. Only graduate courses with formal lecture can be counted for both degrees.

The combined BSCpE/MSEM program has been designed to be a continuous program. Students will receive their BSCpE degree upon completion of all the requirements of the BSCpE program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from his/her bachelor’s degree program. Upon conferral of the bachelor’s degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students may elect to permanently leave the combined program and earn only the BSCpE degree. Students who elect to leave the combined program and earn only the BS degree will have the same access requirements to regular graduate programs as any other student but will not be able to use the 6 credit hours in both the BSCpE and MSEM degrees.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.

Combined BS in Computer Science/MS in Engineering Management (BSCS/MSEM)

Students who pursue a BS degree and are in their first semester of the senior year in Computer Science and have earned at least a 3.2 overall GPA may, upon recommendation from three faculty members, apply to the department to enroll in the combined BSCS/MSEM program. Students must also submit an online application to the University Graduate School for admission to the MSEM program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor’s degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor’s degree program. Upon conferral of the bachelor’s degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students enrolled in the combined degree program could count up to three Computer Science graduate courses toward satisfying both the BSCS and the MSEM requirements, for a total saving of 9 credit hours. Students are required to take four courses from the following list. Additional courses may be selected with approval of the program director.

- **CEN 5011** Advanced Software Engineering
- **COP 5725** Principles of Database Management Systems
The combined BSCS/MSEM program has been designed to be a continuous program. During this combined BSCS/MSEM program, upon completion of all the requirements of the BSCS program, students will receive their BSCS degree. Students may elect to permanently leave the combined program and earn only the BSCS degree. Students who elect to leave the combined program and earn only the BSCS degree will have the same access requirements to regular graduate programs as any other student, but will not be able to use the 9 credit hours in both the BSCS and MSEM degrees.

For each of the graduate courses counted as credits for both BSCS and MSEM degrees, a minimum grade of "B" is required. Only graduate courses with formal lecture can be counted for both degrees. The students are responsible for confirming the eligibility of each course with their undergraduate advisors.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program, preferably during their junior year, since appropriate planning of coursework is required in order to achieve the full nine-credit benefit. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.

Combined BS in Information Technology/MS in Engineering Management (BSIT/MSEM)

Students who pursue a BS degree and are in their first semester of the senior year in Information Technology and have earned at least a 3.2 overall GPA may, upon recommendation from three ECE faculty members, apply to enroll in the combined BSIT/MSEM program. Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor’s degree program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students enrolled in the combined degree program could count up to two Electrical Engineering graduate courses for both the BSEE electives and the MSEM electives, for a total saving of 6 credit hours. A minimum grade of "B" is required graduate courses counted as credits for both BSEE and MSEM degrees. Only 5000-level or higher courses may be applied toward both degrees. Only graduate courses with formal lecture can be counted for both degrees.

The combined BSEE/MSEM program has been designed to be a continuous program. Students will receive their BSEE degree upon completion of all the requirements of the BSEE program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from his/her bachelor's degree program. Upon conferral of the bachelor's degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students may elect to permanently leave the combined program and earn only the BSEE degree. Students who elect to leave the combined program and earn only the BS degree will have the same access requirements to regular graduate programs as any other student but will not be able to use the 6 credit hours in both the BSEE and MSEM degrees.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.
combined BSIT/MSEM program, upon completion of all the requirements of the BSIT program, students will receive their BSIT degree. Students may elect to permanently leave the combined program and earn only the BSIT degree. Students who elect to leave the combined program and earn only the BS degree will have the same access requirements to regular graduate programs as any other student, but will not be able to use the 9 credit hours in both the BSIT and MSEM degrees.

For each of the graduate courses counted as credits for both BSIT and MSEM degrees, a minimum grade of “B” is required. Only graduate courses with formal lecture can be counted for both degrees. The students are responsible for confirming the eligibility of each course with their undergraduate advisors.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program, preferably during their junior year, since appropriate planning of coursework is required in order to achieve the full nine-credit benefit. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.

Combined BS in Mechanical Engineering/MS in Engineering Management (BSME/MSEM)

Students who pursue a BS degree and have completed 75–90 credits in the undergraduate program of Mechanical Engineering with an overall GPA of 3.2 or higher may, upon recommendation from three faculty members, apply to the department to enroll in the combined BSME/MSEM program. Students must also submit an online application to the University Graduate School for admission to the MSEM program. In addition to the admission requirements of the MSEM program, students must meet all the admission requirements of the University Graduate School.

Students need only apply once to the combined degree program, but the application must be submitted to Graduate Admissions before the student starts the last 30 credits of the bachelor’s degree program. A student admitted to the combined degree program will be considered to have undergraduate status until the student applies for graduation from their bachelor’s degree program. Upon conferral of the bachelor’s degree, the student will be granted graduate status and be eligible for graduate assistantships.

Students enrolled in the combined degree program could count up to three Mechanical Engineering graduate courses for both the BSME electives and the MSEM electives, for a total saving of 9 credit hours. The following is a list of eligible Mechanical Engineering graduate courses:

- EGM 5346 Computational Engineering Analysis
- EGM 5354 Finite Element Method Applications in ME

- EMM 5103 Synthesis of Engineering Mechanics
- EMM 5152 Intermediate Heat Transfer
- EMM 5505 Smart Machine Design and Development
- EMM 5509 Optimization Algorithms
- EMM 5530 Intermediate CAD/CAE
- EMM 5606C Advanced Refrigeration and AC Systems
- EMM 5709 Intermediate Fluid Mechanics

The combined BSME/MSEM program has been designed to be a continuous program. During this combined BSME/MSEM program, upon completion of all the requirements of the BSME program, students will receive their BSME degree. Students may elect to permanently leave the combined program and earn only the BSME degree. Students who elect to leave the combined program and earn only the BS degree will have the same access requirements to regular graduate programs as any other student, but will not be able to use the 9 credit hours in both the BSME and MSEM degrees.

For each of the graduate courses counted as credits for both BSME and MSEM degrees, a minimum grade of “B” is required. Only graduate courses with formal lecture can be counted for both degrees. The students are responsible for confirming the eligibility of each course with their undergraduate advisors.

Students interested in the combined program should consult with their undergraduate advisor on their eligibility to the program. The student should also meet the MSEM Program Director to learn about the graduate program and available tracks/courses before completing the application form and submitting it to their undergraduate advisor. Final decision for admission to the MSEM program will be made by the University Graduate School upon recommendation by the Engineering Management program director. Applicants will be notified by the Engineering Management Program and the University Graduate School of the decision on their applications.

Master of Science in Logistics Engineering

The MS-Logistics Engineering program will include student learning outcomes that address logistics from several complementary perspectives: (1) Students will gain structural technical training dedicated to logistics engineering by teaching contemporary logistics systems, technology, and operations; (2) students will gain the systems engineering tools and techniques that apply to addressing emerging challenges in the industry with respect to design and development of logistics systems and technology; and (3) students will gain deeper knowledge of specific areas in logistics such as warehouse or inventory systems design through selection of elective courses.

Admission Policies

The applicant to the MS program in Logistics Engineering must have a bachelor’s degree in industrial engineering, systems engineering, operations research, or a closely related area such as business administration, MIS, or other engineering disciplines, from a regionally accredited institution with a minimum of “B” average in upper-level undergraduate work, or a graduate degree from an
accrued institution. In addition, international graduate student applicants whose native language is not English are required to submit a score for the Test of English as a Foreign Language (TOEFL) or for the International English Language Testing System (IELTS). A total score of 80 on the iBT TOEFL or 6.5 overall on the IELTS is required.

Degree Requirements

The MS program in Logistics Engineering requires 30 credit hours of 10 coursework from three clusters of graduate courses. The first consists of 4 core courses in logistics operations, the second consists of 3 elective courses in systems engineering, and the third consists of 3 elective courses in logistics systems and technology.

Logistics Engineering Core Courses: (4 courses, 12 credit hours)

- ESI 5010C Forecasting and Demand Management 3
- EIN 5346 Logistics Engineering 3
- EIN 6133 Enterprise Engineering 3
- EIN 6345 Inventory Control System 3

Elective Systems Engineering Courses: (3 courses, 9 credit hours)

- EIN 5226 Total Quality Management for Engineers 3
- EIN 5332 Quality Engineering 3
- EIN 5359 Industrial Financial Decisions 3
- EIN 5367 Design of Production Systems 3
- ESI 5522 Simulation Models of Engineering Systems 3
- ESI 6316 Applications of OR in Manufacturing 3
- ESI 6440 Integer Programming 3
- ESI 6455 Advanced Engineering Project Management 3
- ESI 6470 Stochastic Optimization 3
- ESI 6524 Advanced Industrial Systems Simulation 3
- ESI 6546 Network Flow Analysis 3

Elective Logistics Systems and Technology Courses: (3 courses, 9 credit hours)

- EGS 5620 Enterprise Systems Configuration 3
- EGS 5621 Enterprise Systems Collaboration 3
- EGS 5622 Enterprise Systems Integration 3
- EGS 5623 Enterprise Systems Optimization 3
- EIN 6336 Advanced Production Planning and Control 3

Graduate Certificate in Engineering Management (GCEM)

This certificate program is designed for practicing engineers and graduate students in all engineering majors, who are interested in acquiring skills for managerial careers in the engineering and technology industries. The GCEM program is especially helpful for those engineers who seeking to transition into management and wish to acquire the necessary knowledge and skills. More than a sequence of coursework, the certificate program also simulates a business environment where students learn and apply engineering tools, managerial theories, and best practices to design and operate industrial and engineering systems. Students in the program are expected to acquire contemporary engineering management theories and techniques. This certificate program is open to both degree- and non-degree seeking students.

Admission Requirements

A minimum undergraduate GPA of 2.75 is required for admission. International graduate student applicants whose native language is not English are required to submit a score for the Test of English as a Foreign Language (TOEFL) or for the International English Language Testing System (IELTS). A total score of 80 on the iBT TOEFL or 6.5 overall on the IELTS is required.

Certificate Requirements

All the credits earned in this Certificate program may be used in the Master of Science in Engineering Management (MSEM) degree program provided the student is admitted to the MSEM degree program prior to the completion of no more than 12 Graduate Certificate credits.

EIN 5226 Total Quality Management for Engineers 3
- EIN 5359 Industrial Financial Decisions 3
- EIN 6133 Enterprise Engineering 3
- ESI 6455 Advanced Engineering Project Management 3
- LAW 5072 Business Law and Intellectual Property for Engineers and Entrepreneurs 3

Graduate Certificate in Enterprise Systems (GCES)

This certificate program is designed for those who are interested in acquiring expertise and skills in the growing discipline of Enterprise Systems (ES). ES software utilizes the computational power with massive data storage and transmission capabilities to support enterprise processes, information flows, reporting, and data analytics within and among complex organizations. Typical Enterprise Systems include Enterprise Resource Planning (ERP), Supply Chain Management (SCM), and Customer Relationship Management (CRM). The software architecture aiming at facilitating the flow of information among all business functions inside the boundaries of the organization and to outside stakeholders. Built on a centralized database and business intelligence, ES aims to consolidate all business operations into a uniform, real-time, and enterprise-wide system environment. This certificate program is open to both degree- and non-degree seeking students.

The Graduate Certificate in Enterprise Systems (GCES) program combines the optimal design of enterprise structures and operations with SAP implementation. The Certificate program consists of five required graduate courses.

Admission Requirements

A minimum undergraduate GPA of 2.75 is required for admission. International graduate student applicants whose native language is not English are required to submit a score for the Test of English as a Foreign Language (TOEFL) or for the International English Language Testing System (IELTS). A total score of 80 on the iBT TOEFL or 6.5 overall on the IELTS is required.

Certificate Requirements

Students must take at least 5 required courses and receive an average grade of “B” or higher. In addition, students who attain “B” or better in at least three courses will also earn a SAP certificate. All the credits earned in
this Certificate program may be used in the Master of Science in Engineering Management (MSEM) degree program provided the student is admitted to the MSEM degree program prior to the completion of no more than 12 Graduate Certificate credits.

EIN 6133 Enterprise Engineering 3
EGS 5620 Enterprise Systems Configuration 3
EGS 5621 Enterprise Systems Collaboration 3
EGS 5622 Enterprise Systems Integration 3
EGS 5623 Enterprise Systems Optimization 3

<table>
<thead>
<tr>
<th>Course Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of Prefixes</td>
</tr>
<tr>
<td>EGN-Engineering, General; EGS-Engineering Support; EIN-Engineering, Industrial; ESI-Engineering Systems Industrial</td>
</tr>
<tr>
<td>F-Fall semester offering; S-Spring semester offering; SS-Summer semester offering.</td>
</tr>
</tbody>
</table>

EIN 5435 Product Modeling (3). Life cycle product data, geometry and form features, product information models and modeling techniques, product modeling systems, and product data standards. Prerequisites: EGN 3124 or equivalent.

EIN 5550 Risk Analysis in Business Concept Development for Engineers and Entrepreneurs (3). It integrates assumptions, risk/forecasting with engineering approach to new business development. The course uses exercises, cases and projects to develop practical experience with course theories.

EIN 5644 Commercializing Innovation (3). Product development/process, innovation, commercialization; needs analysis; market segmentation; value proposition; prototyping, packaging and branding; modeling costs and margins; hands-on practice. Prerequisite: Permission of the instructor.

EIN 6436 Manufacturing Process Design (3). Resources modeling, process plan modeling, and planning methodologies for process selection, operations selection, machining parameters selection, setup planning, and inspection planning. Prerequisite: EGN 5842.

EIN 6437 Manufacturing Systems Design (3). System design for production and process planning, resource management, material handling, process control, and quality control. Prerequisite: Permission of the instructor.

EIN 6438 Manufacturing Engineering (3). Manufacturing functions, product and process design, material processing and control, systems design and operations, resource and technology management, and analytical tools for manufacturing. Prerequisites: EIN 3390 or equivalent. (F)

EIN 6940 Graduate Internship - Orthotics and Prosthetics Clinical Rotation (1-6). To provide graduate students with real world clinical experience in Orthotics and Prosthetics, under approved professional supervision. Prerequisite: Permission of the program director.

EIN 6971 Master’s Project (1-3). Individual work culminating in a professional practice-oriented report suitable for the requirements of the Master of Science in Manufacturing Engineering program.

EGS 5620 Enterprise Systems Configuration (3). Enterprise systems overview; major enterprise functions; standard operation procedures; system configuration and parameters; master data; user interfaces and reports; and hands-on experience. Prerequisite: Permission of the instructor.

EGS 5621 Enterprise Systems Collaboration (3). Collaborative engineering and environment; decision processes; changes management; virtual enterprise operation systems; and hands-on experience with a commercial enterprise operation system. Prerequisite: EGS 5622.

EGS 5622 Enterprise Systems Integration (3). Enterprise architectures; work flow modeling and design; systems integration methodology; vertical and horizontal integration; master data analysis and integration; and hands-on experience. Prerequisite: EGS 5620.

EGS 5623 Enterprise Systems Optimization (3). Supply networks overview; interactive supply network planning; optimal systems and process design; optimization techniques and heuristics; master and transaction data transfer; and hands-on experience. Prerequisite: EGS 5622.

EIN 5106 Regulatory Aspects of Engineering (3). A survey of the legal and regulatory requirements encountered by engineers. Included will be OSH Act, NIOSH, ADA, EEOC, Worker’s Compensation and Product Liability.

EIN 5226 Total Quality Management for Engineers (3). Fundamentals of TQM and its historical development. Integration of QC and management tools, QFD, benchmarking, experimental design for scientific management. (F,S)

EIN 5244 Cognitive Engineering (3). Advanced topics in human factors and cognitive engineering. Theoretical aspects of applied situation awareness and decision making, and applications in a variety of engineering domains. Prerequisite: EIN 4243.

EIN 5249 Occupational Biomechanics (3). Study of the theoretical fundamentals for the mechanics of the body. The link system of the body and kinematic aspects of body movement including applications of biomechanics to work systems. Prerequisites: EIN 4314 Work Design and Industrial Ergonomics or equivalent. (S)

EIN 5256 Usability Engineering (3). The usability aspects of software systems design and testing. The theory of interface design for usability and the methods and techniques for designing and testing technology interfaces. Prerequisite: Permission of Instructor.

EIN 5322 Engineering Management (3). Organization of engineering systems including production and service organizations. Inputs of human skills, capital, technology, and managerial activities to produce useful products and services. (F,S)

EIN 5332 Quality Engineering (3). This course examines quality control from an engineering standpoint. It covers
ways to meet the challenge of designing high-quality products and processes at low cost. Prerequisites: EIN 3331 or equivalent. (S)

EIN 5346 Logistics Engineering (3). Concepts and tools for effective design and management of supply chain systems. Includes logistics strategies, inventory management, customer service, supply chain integration and logistics network design. Prerequisite: Permission of the instructor.

EIN 5359 Industrial Financial Decisions (3). The use of financial techniques and data in planning, controlling and coordinating industrial activities. This course will familiarize the student with accounting concepts and analytical methods. Prerequisite: EGN 3613. (SS)

EIN 5367 Design of Production Systems (3). The design of an industrial enterprise including feasibility, plant layout, equipment specifications, auxiliary services, economics and scheduling. Prerequisite: EIN 3365.

EIN 5605 Robotic Assembly Cell (3). Concepts of robot manipulation and sensing, part design for robotic assembly, planning manipulator trajectories, machine vision, robot programming language, cell control, and material transfer. Prerequisite: EIN 3600. (S)

EIN 6105 Technology Policies and Strategies (3). Strategies and policies for managing all aspects of technology. Includes value chain integration, intellectual property, and internal processes and systems.

EIN 6117 Advanced Industrial Information Systems (3). Review of the fundamental and theoretical foundation of industrial information systems. Application of the system design process and information system concepts to develop integrated engineering systems. (F,S)

EIN 6131 e-Systems Design (3). The study and application of engineering analysis and design methods for Internet-based systems. The integration of Internet technologies and applications into engineering information systems. Prerequisites: ESI 5602, EIN 6117.

EIN 6132 Collaborative Engineering (3). Product data management, visualization, collaboration, collaborative product commerce, document management, component supplier management, configuration management, enterprise application integration. Prerequisite: Permission of the instructor.

EIN 6133 Enterprise Engineering (3). Enterprise processes and functions, enterprise engineering methodology and techniques, enterprise scalability, systems and vertical integration, systems design and implementation. Prerequisite: Permission of Instructor.

EIN 6160 Management of Innovation and Technology (3). The course provides an integrated view of management of technology. The combination of theory and practice addresses the challenges of globalization, time compression, and technology integration. Prerequisite: Permission of instructor.

EIN 6246 Advanced Human-Machine Interaction Design (3). The application of human factors analysis and design methods to complex system interaction. Interface design for technological systems in workplace and consumer domains. Prerequisites: EIN 4243 or equivalent.

EIN 6248 Advanced Ergonomics (3). Analysis of human factors in the design of engineering systems, with emphasis on the interphase of man-machine-media and human limitations in relation to equipment design and work environments. Prerequisites: EIN 4314, EIN 4243, and PCB 3702 or equivalent. (F)

EIN 6258 Ergonomic Design of Aerospace Systems (3). Application of ergonomic criteria in design of civil and military aircraft cockpits and control systems. Ergonomic consideration in design of outer space vehicles, stations, and systems. Prerequisite: EIN 6248.

EIN 6259 Usability Engineering in E-commerce (3). This advanced course applies usability engineering theories and methods to models of e-commerce. Usability models are presented and evaluated using case studies. Prerequisite: EIN 5256.

EIN 6319 Advanced Work Design (3). Study of the various human physiologic systems and their responses as it relates to occupational work including endurance, fatigue, recovery, and energy cost of work. Prerequisite: EIN 6248. (S)

EIN 6324 Technology Entrepreneurship (3). Entrepreneurial process, evaluation of technology, startup operations and strategy, business plans and venture capital, intellectual property and rights, growth and technology management.

EIN 6325 Business Plan Development (3). This course deals with the critical decisions and action steps that entrepreneurs must make in both planning and executing a new venture. It also covers how to develop an effective written plan. Prerequisite: Permission of advisor.

EIN 6327 Entrepreneurship and New Venture Initiation (3). It covers critical factors of initiating new ventures: entrepreneurial networks, venture creation, strategies, evaluation, financing, legal considerations, market strategies, and feasibility analysis.

EIN 6329 Advanced Engineering Business Plan Development (3). This course takes students through the process of writing a plan for a new business venture through to implementation. Heavy emphasis placed on research and case analysis. Prerequisites: EIN 6324 or MAN 6805.

EIN 6336 Advanced Production Planning and Control (3). Analytical and algorithmic planning methodologies, planning and scheduling technologies, sequencing rules, control strategies, and line balancing methods. Prerequisite: EIN 4334.

EIN 6345 Inventory Control Systems (3). Design of non-traditional inventory control systems. Development of several inventory system models. Exploration of methods of collecting appropriate demand and cost data for effective systems analysis. Prerequisite: ESI 3314.

EIN 6357 Advanced Engineering Economy (3). Review of engineering economy and the evaluation of advanced manufacturing systems. Evaluation of alternative capital investments considering income taxes, depreciation, inflation, risk and uncertainty. Prerequisite: EGN 3613. (SS)

EIN 6392 Product Design for Manufacturability and Automation (3). Overview and integration of the design-
material-manufacture process. Design considerations for manufacturability, assembly, and economical production. Concurrent engineering systems. Prerequisite: EIN 4395. (S)

EIN 6393 Design and Implementation of Discrete Manufacturing Systems (3). Methodology and techniques for design, planning and implementation of discrete production systems including process/machine selections, material handling and inspection technologies, cell control, etc. Prerequisites: Graduate or seniors with EIN 3365, EIN 3390, and ESI 3523 or equivalent.

EIN 6397 Advanced Topics in Manufacturing Automation (3). Overview of manufacturing systems; evolution of controls and AI, material handling, automation clamps, jigs, and fixtures, cutting sensors, machine vision and autonomous manufacturing. Prerequisites: EIN 6392 and EIN 6398.

EIN 6398 Advanced Manufacturing Process Engineering (3). Non-traditional manufacturing processes. Tool selection, jig and fixture design, material handling, tolerance and dimensioning. Product assembly engineering economics, and manufacturing process planning. Prerequisite: EIN 3390. (F)

EIN 6603 Applied AI/Expert Systems in Industrial Engineering (3). Application of artificial intelligence and expert systems as engineering tools. Exploring the use of PCs and symbolic machine with various AI/Expert Systems software. Several projects are required. Prerequisite: CAP 5680.

EIN 6606 Robotic Systems (3). Basic robotic system principles, functional requirements of robotic systems, simulation of system preliminary design, and physical experimentation of robotic systems.

EIN 6908 Independent Study (1-3). Individual supervised study by a faculty. A study plan and a final report are work required. Prerequisite: Departmental approval.

EIN 6910 Supervised Research (1-9). Advanced research credits under the supervision of the dissertation advisor.

EIN 6916 Master’s Project (1-3). Individual work culminating in a professional practice-oriented report suitable for the requirements of the Master of Science in Engineering Management program. Prerequisite: Departmental approval.

EIN 6971 Master’s Thesis (1-3). The students following the thesis option should work on his/her thesis through this course. (F,S,SS)

EIN 6980 Ph.D. Dissertation (1-12). Doctoral research leading to Ph.D. dissertation in Industrial and Systems Engineering. Prerequisites: Doctoral Candidacy and permission of Graduate Director.

ESI 5456 Productivity Management in the Global Organization (3). Analysis of productivity management strategies. Major issues in performance and productivity management, domestic and global outsourcing, international labor standards and trade policies. Prerequisites: EIN 4214 or equivalent.

ESI 5522 Simulation Models of Engineering Systems (3). Simulation Methodology; design and implementation of models of engineering systems using computer software; case studies. Prerequisite: STA 3033 or EIN 3235 or equivalent and COP 3175 or equivalent.

ESI 5602 Engineering Data Representation and Modeling (3). The course will cover the life cycle of designing, developing, and implementing engineering database systems by applying the IDEFx methodology. Prerequisite: Permission of Instructor.

ESI 6316 Applications of OR in Manufacturing (3). Overview of OR techniques. Manufacturing system and product selection. Shop loading, resource allocation, production scheduling, job sequencing, and plant layout problems. System performance evaluation. Prerequisite: ESI 3314. (F)

ESI 6319 Operations Research and Information Technology (3). Principles and paradigms for the design and implementation of OR models, which may be integrated into an organization’s existing information system and technologies. Prerequisite: ESI 6316.

ESI 6440 Integer Programming (3). Formulating and solving decision-making problems with discrete decision variables. Methods to solve large-scale integer/mixed-integer models. Prerequisite: ESI 6316.

ESI 6455 Advanced Engineering Project Management (3). This course covers entire phases of project management including selection, planning, budgeting, scheduling, monitoring, and control. It focuses on the management of engineering projects through case studies and independent research assignment. Prerequisite: Permission of the instructor. (S,SS)
ESI 6460 Methods for Algorithm Development for Industrial Engineering Applications (3). Methods for algorithm development for Industrial Engineering applications, with emphasis on powerful optimization techniques and analysis tools. Prerequisites: ESI 3314 or permission of instructor.

ESI 6470 Stochastic Optimization (3). Formulating and solving decision-making models with uncertain data. Exact and approximation techniques for large-scale stochastic models. Prerequisite: ESI 6316.

ESI 6524 Advanced Industrial Systems Simulation (3). Advanced simulation techniques with a focus on practical systems modeling using several user-oriented simulation languages. Projects involving design of high-performance simulation programs are required. Prerequisite: ESI 5522 or equivalent. (S)

ESI 6528 Advanced Topics in Simulation Modeling (3). An examination of the role of artificial intelligence, object oriented programming, and databases as enabling technologies in the simulation modeling process. Review of the literature and case studies. Prerequisites: ESI 6524 or equivalent.

ESI 6546 Network Flow Analysis (3). Deterministic and stochastic network flow analysis; minimal cost flow, shortest route, max-flow, and out-of-kilter algorithms; constrained network analysis; and stochastic queuing networks. Prerequisite: ESI 3314.

ESI 6547 Stochastic Models of Industrial Systems (3). Applications of models from game theory, decisions analysis, queuing, inventory, scheduling to assess the performance level of industrial systems operating under random conditions. Prerequisite: ESI 6316.

ESI 6601 Data Warehousing and Mining (3). Knowledge discovery for effective design of data storage. Discussion of the difficulties associated with data warehousing and mining. Literature review and case studies.

Research, Development and Training Centers

Advanced Materials Engineering Research Institute (AMERI)

Chunlei (Peggy) Wang, Interim Director and Associate Professor, Mechanical and Materials Engineering

The Advanced Materials Engineering Research Institute provides an open access equipment infrastructure to support materials research and engineering over a broad range of technology and capabilities. The Institute provides analytical instrumentation, materials characterization, and process development laboratories to support faculty and industry in the development and characterization of new materials over the continuum from the nanoscale to bulk materials.

The Analytical Instrumentation Laboratory contains two field emission scanning electron microscope (FESEM), a 200 keV Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), X-ray diffraction, thermal (DSC, TGA, DMA), dilatometer flush diffusion, and mechanical testing (uniaxial/biaxial Instron). Process Development laboratories for ceramic processing (sol-gel, tape casting, milling), and thermal processing (air, vacuum, hydrogen, controlled atmosphere furnaces) are available to support faculty and student researchers.

The Institute consists of the Motorola Nanofabrication Facility which is supported by a class 100 clean room and nanofabrication capabilities including e-beam lithography and optical photolithography. Fabrication of nano/micro electromechanical systems (N/MEMS) can be accomplished by a combination of nanolithography, focused ion beam (FIB) micro machining, nano imprinting, reactive ion etching, and thin film deposition by a variety of techniques (e-beam, sputtering, imprinting, evaporation, cvd).

In addition to supporting research within the graduate program in materials science within the Department of Mechanical and Materials Engineering, the Institute supports faculty across all departments (physics, chemistry, geology, biology, electrical and computer engineering and biomedical engineering) in materials based research.

Research and Support Staff

Chunlei (Peggy) Wang, Interim Director and Associate Professor, Mechanical and Materials Engineering

Arvind Agarwal, Professor, Mechanical and Materials Engineering

Jiuhua Chen, Professor, Mechanical and Materials Engineering

W. Kinzy Jones, Professor, Mechanical and Materials Engineering

Chenzhong Li, Associate Professor, Biomedical Engineering

Wenzhi Li, Associate Professor, Physics

Norman Munroe, Associate Professor, Mechanical and Materials Engineering

Surendra Saxena, Professor, Mechanical and Materials Engineering

Yuriy Vlasov, Research Engineer

Yesim Darici, Associate Professor, Physics

Watson Lees, Associate Professor, Chemistry

Kevin O’Shea, Professor, Chemistry

Neal Ricks, AMERI Manager

Applied Research Center (ARC)

John R. Proni, Ph.D. Executive Director

David Roelant, Ph.D. Associate Director of Research for Environment & Water

George Philippidis, Ph.D. Associate Director of Research for Energy

Jerry Miller, Associate Director of Security, Policy and Technologies

Richard Burton, PMP Associate Director of Business Programs

Gloria Dingeldein, Associate Director of Grants

Leonel Lagos, Ph.D., PMP Director of Diversity and Workforce Development & Training

ARC’s mission is to solve complex issues in environmental stewardship, energy, and defense through innovative, cooperative research and entrepreneurship. In carrying out this mission, the Applied Research Center is committed to providing training opportunities to the University’s uniquely diverse student body under the mentorship of the Center’s experienced engineers and scientists.
ARC’s vision is to be a leading university-based, applied research institution that provides real-world solutions throughout the Americas and globally that will enable Florida International University to become a leading research institution with well funded programs.

Environment & Water – ARC provides a full spectrum applied environmental and water research. With over 260 projects and $90M of funding in this area since the Center’s founding in 1995, ARC is a nationally recognized leader. Examples of science research include: development and testing of remediation technologies to stabilize toxic metal contaminants in soils; new analytical methods for perchlorate measurements in fish tissue; and the modeling of the energy-dependent, absorption and transmission of infrared light through human tissues for safety standards and for new medical imaging technologies. In technology development ARC has developed patents and other intellectual property such as: automated monitoring systems for sampling ground and surface water as well as wells; technologies contaminated with radioactivity; novel new sensors for contaminants in soils and groundwater (e.g., Hg and U); improved scabbling systems for removing surface contamination from floors, walls and large bore piping; sensor systems for UGVs and UAVs; and much more. ARC is the one of only three major environmental technology test and evaluation centers in the U.S. ARC has tested over 250 new, commercial technologies in order to assess and improve their effectiveness prior to deployment across the country. Several States including Texas have implemented ARC’s rigorous environmental technology testing methodology. ARC is a leading university research program in waste management and pollution prevention, with $1-2M per year of funding and has certification in hazardous waste management. ARC currently assists DOE in the cleanup of the Nuclear Weapons Complex by developing technologies to remediate contaminated soil and groundwater plumes; technologies to clean and dismantle contaminated nuclear facilities; and those to characterize, retrieve and treat radioactive and mixed wastes. Water research focuses on advanced groundwater and surface water modeling for clients worldwide including contaminated sites across the U.S. such as the Everglades. 1000 students to date have had “hands on” research mentoring and training at ARC in the water and environmental area. In collaboration with ARC’s Security, Policy and Technologies scientists ARC has supported the U.S. Army by developing, fabricating and demonstrating several environmental technologies across Latin America (e.g., wetlands design and construction, mobile water purification systems). More on ARC’s Environmental and Water research can be found at www.arc.fiu.edu/environment&water

Renewable Energy and Biofuels – The country’s over-dependence on imported oil and increasing concern about global warming necessitate the development of domestic renewable energy and fuel sources and the adoption of energy efficiency and conservation steps. In light of the country’s urgent need for enhanced energy security and reduced greenhouse gas emissions, ARC is developing technologies covering the full spectrum of sustainable energy resources from solar and wind to biomass, biofuels, and fuel cell systems. Capitalizing on the national emphasis on clean and renewable energy, ARC has enhanced its research and technology development activities in various energy fields and has created an affiliate center, the Center for Energy and Technology of the Americas (CETA) to promote energy integration and technology transfer within the Western Hemisphere. ARC is developing technologies for production of sustainable biofuels: (1) Ethanol from cellulosic biomass, such as sugarcane bagasse and wood waste, using biochemical and thermochemical processes, and (2) Biodiesel from non-edible oils (jatropha) and from native algae. In the areas of hydrogen and fuels cells, ARC investigates the production of hydrogen from biomass via gasification and biologically by microorganisms, while looking for ways to manufacture cost-competitive high temperature PEM fuel cells. ARC possesses pilot-scale facilities for biomass gasification and biodiesel production, which serve the needs of the public and private sectors for testing and demonstrating new technologies. Moreover, in collaboration with FIU’s Business School, the ARC has formed the Energy Business Forum (EBF), which promotes the development on new energy markets and their integration into the existing fossil energy infrastructure. The EBF has been organizing stakeholder conferences to facilitate dialogue, exchange of ideas and partnerships.

Security, Policy and Technologies – ARC conducts advanced research in security policy; renewable energy technologies and other security/defense technologies. ARC’s scientist and engineers conduct a variety of research work applicable for the DOD, DHS and other private entities involved in security and defense issues. ARC’s researchers have linguistic and cultural skills needed to implement solutions in the field. Our mission is to solve international problems in the field through integration of technology and policy development in three areas—Applied Technologies, Security and Stability Studies, and Security Technologies.

Applied Technologies focuses on researching, demonstrating, validating and implementing renewable energy and environmental technologies in the field in order to develop sustainable solutions in the following areas: 1) Rural electrification, 2) Biomass gasification for thermal and electrical energy production, 3) Constructed wetlands as a treatment for waste water, 4) Solar-power and solar-powered water purification systems, 5) Micro-hydro electric generation, 6) Bio-fuels production and use ("fuel to fuel") and 7) International Waste-to-Energy solutions. Security and Stability Studies addresses security and policy research throughout Latin America and the Caribbean. Using a “network of experts approach”, a multidisciplinary group of collaborative experts from more than 30 universities throughout the hemisphere, focus on emerging security threats throughout the world. ARC sponsors colloquia, conferences and research on stability and security issues, and delivers analytical reports that combine economic, geopolitical, social and scientific analysis, as well as recommendations to our clients.

Security Technologies (formerly Defense Technologies) is an expanding area of research that includes research in development and implementation of security technologies in the fields of acoustic systems, sensor systems, mobile platform robotics, artificial intelligence and information technology, detection systems, advanced power systems for remote sensors and development/applications of UAVs. During the past three years, the Center has conducted research on twelve projects with an overall value of more than $4M. Clients such as AFOSR, AFRL, ARO, MDA, DARPA, and NRO have partnered with ARC
on research, which includes: integration of sensors and imaging systems into autonomous monitoring technologies, such as remote ground stations and unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs); Computational Fluid Dynamics analyses and experimental research for micro-channel nozzle flow for space vehicle thrusters, hypersonic flow for scramjets, model verification of ice formation on wings, and micro-channel cooling of electronic components; and numerical simulation of micro-bubble drag reduction for applications in naval ships and submarines.

Workforce Development and Training – The DOE-FIU Science and Technology **Workforce Development** program is an innovative program to create a “pipeline” of FIU STEM (science, technology, engineering, and math) underrepresented students specifically trained and mentored to enter the DOE workforce in technical areas of need. The main objective of the program is to provide a unique integration of FIU course work, DOE field work, and hands-on training (ARC). It is envisioned that once our DOE Fellows graduate from this program they will enter DOE-EM’s Professional Development Corps Program and/or work for DOE’s contractor firms. To date, a total of 33 FIU underrepresented students have joined the program. The students are officially inducted into the program and vested the name of **DOE Fellows** in a special Induction Ceremony celebrated during the Fall semester. DOE Fellows also have internship opportunities at DOE National Laboratories and DOE sites around the country. Since the program’s initiation in 2007, a total of 14 DOE Fellows have participated in research internships at Oak Ridge National Laboratory, Idaho National Laboratory, Pacific Northwest National Laboratory, and DOE-HQ in Washington DC. In addition, our DOE Fellows directly support DOE contractors performing environmental remediation around the DOE Complex. Furthermore, this program enables undergraduate students to pursue the M.S. and Ph.D. degrees by providing Research Assistantships. So far, a total of 10 DOE Fellows have obtained B.S. degrees and have transitioned to M.S. programs at FIU.

ARC is committed to the education and development of FIU students and has developed a Student Steering Committee (SSC) that oversees the academic and research progress of each student. This committee also conducts interviews and evaluates applicants for the program. ARC is working closely with federal, state agencies, community colleges and other universities to provide training in alternative energy areas such as: solar, biomass, nuclear and weathering. This Energy Systems Training Network under the Florida Energy Systems Consortium (FESC) will help to develop a 21st century “green workforce”.

Doing Business with the Applied Research Center – ARC’s employees are drawn from a wide segment of the commercial, government, and academic arenas to collectively utilize their experience and expertise to support the needs of FIU’s clients. Our operating philosophy recognizes and accommodates the critical performance characteristics of government and commercial activities, while exercising the benefit of its cost structure in a way that serves both client interests and those of the University and its students. Our staff is fully engaged in the project and program activities assigned. The critical difference in the ARC’s structure is the project management and administrative processes and structures that have been put in place to serve its clients. The Center has executed work for federal agencies, state and local governments, and commercial entities, in large part through task-based contracts. For instance, in working with the U.S. Department of Defense, the Center has acted as both the prime contractor and as a sub-contractor/consultant for commercial partners, serving to streamline the process. For more information on FIU’s ARC, please visit www.arc.fiu.edu or email us at arc@arc.fiu.edu or call (305) 348-4238.

Bioinformatics Research Center (BioRG)

Giri Narasimhan, Director and Professor, School of Computing and Information Sciences

The mission of this research group is to work on problems from the fields of Bioinformatics and Biotechnology. The group’s research projects includes Pattern Discovery in sequences and structures, micro-array data analysis, primer design, probe design, phylogenetic analysis, image processing, image analysis, and more. The group builds on tools and techniques from Algorithms, Data Mining, Computational Statistics, Neural Networks, and Image Processing.

Center for Advanced Distributed Systems Engineering

Xudong He, Director and Professor, School of Computing and Information Sciences

Another of our research efforts is the Center for Advanced Distributed System Engineering (CADSE). Its mission is to establish a streamlined research, technology exploration and advanced training program in the field of distributed and Internet-based computing. The Center's R&D cover both theoretical and practical aspects of distributed software engineering, i.e. using engineering methods and technologies to tackle development problems of complex, reliable, and/or real-time distributed systems.

Center for Advanced Technology and Education (CATE)

Malek Adjouadi, Director and Associate Professor, Joint Appointment with Biomedical Engineering and Electrical and Computer Engineering

The vision of the NSF-CATE center at FIU is to foster a cross-disciplinary research and educational program as a catalyst for our undergraduates and graduates alike to develop their creative thinking by bringing in synergy the fields of applied information (signal and image) processing, neuroscience and assistive technology research. The CATE center focuses on new methodologies that (1) will enhance analysis and interpretation of signals and images in real-world applications; (2) will meet the impending needs in neuroscience as we elicit both the functional mapping of the brain, and the causality of key brain disorders; and (3) will result in new Human-Computer Interface (HCI) prototypes that address effectively the issue of Universal Accessibility, focusing on visual impairment and motor
disability. Experimental results, as observed through clinical means or through system design evaluations and feasibility studies serve as means to redefine or re-evaluate our theoretical premises. The strong collaboration we have secured with our industry partners generates joint programs, student internships, clinical rotations, joint faculty appointments, shared use of modern equipment and infrastructure. The overall mission of the CATE Center is thus to create a unified infrastructure to synergize imaging/signal processing research, while fostering an environment that supports cross-disciplinary initiatives in order to produce new scientific specialties relying on combinations of specific technologies, medicine, and computation. This environment as set is apt to ensure the anticipated success in meeting our students' educational needs and research goals all the way to the Ph.D. level.

Research Areas
- Image and Signal Processing and Computer Vision
- Real-Time Assistive Systems and Human-Computer Interfaces
- Neuroscience: - EEG Brain Research and Functional Brain Mapping
- Biomedical Applications in Flow Cytometry and Confocal Microscopy
- Robotics for Motion Planning and Automated Guidance
- Parallel and Distributed Processing

Sponsors
- National Science Foundation (NSF)
- Office of Naval Research (ONR)
- Miami Children’s Hospital
- Beckman-Coulter Inc.

Faculty
Malek Adjouadi, Director and Professor, Joint Appointment with Biomedical Engineering and Electrical and Computer Engineering
Armando Barreto, Director of the Digital Signal Processing Laboratory and Associate Professor, Joint Appointment with Biomedical Engineering and Electrical and Computer Engineering
Gustavo Roig, Director, Center for Diversity in Engineering

Research Partners
Prasanna Jayakar, Director, Neuroscience Center, Miami Children’s Hospital
Arthur Karshmer, Professor and Chair, Information Technology, University of South Florida
Rafael Delgado, Executive Vice President and Director of Software Systems, Intelligent Hearing Systems, Miami
Gustavo Rey, Neuropsychologist, Miami Children’s Hospital

Coordinator, Student Recruitment
Stephanie Strange, College of Engineering and Computing, Assistant Director of Recruitment and Retention

Research and Support Staff
Mercedes Cabrerizo, Ph.D. Ware Foundation Research Fellow
Melvin Ayala, Manager, CATE Center

Magno Guillen, Postdoctoral Fellow, MRI Research for Pediatric Epilepsy
Maria Tito, Postdoctoral Fellow, Subural EEG Research in Epilepsy
Lu Wang, Postdoctoral Fellow, Automated Book Reader for the Blind
Mouncef Lahlou, Webmaster

Doctoral Students:
Melvin Ayala, Javier Delgado, Yu Chen, Mohamed Gorawala, Ana Guzman, Mouncef Lahlou, Jin Wang, You Xiaozhen, Mildred Zabawa, Mark Rossmann, Feng Gui

Master’s Students:
Anas Salah Eddin, Gabriel Lizarraga

Industry Partners
- The Brain Institute Miami Children’s Hospital
- The Ware Foundation
- Beckman-Coulter Inc.
- Intelligent Hearing Systems
- American Epilepsy Society
- Children’s National Medical Center

Related Laboratories and Facilities of the CATE Infrastructure
With major funding from the National Science Foundation and the Office of Naval Research, the CATE center has helped establish the following laboratories:
1. EEG Brain Research Laboratory. Funded by NSF-MRI – Housed within the Neuroscience Center at Miami Children’s Hospital.
2. Web-Design Laboratory. Funded jointly by ONR and NSF-MII – Housed within the Engineering Information Center Facility.
3. The Computer Training Laboratory – Housed in Graham Center with the Office of Multicultural Services.

Center for Diversity in Engineering and Computing
Masoud Milani, Director and Professor, School of Computing and Information Sciences
Francisco Fins, Program Coordinator
Jorge Nosti, Program Coordinator
Beatriz Oria, Program Specialist
Rebecca Ramos, Program Coordinator
Katina Vallina, Program Specialist

South Florida’s distinction as a multi-cultured, multi-lingual region has long been a diverse source of talent for FIU, particularly in the College of Engineering and Computing. In response to the challenge of attracting this diverse community to science and engineering, the College of Engineering and Computing has created a special center for Diversity in Engineering and Computing.

Research and Support Staff
Mercedes Cabrerizo, Ph.D. Ware Foundation Research Fellow
Melvin Ayala, Manager, CATE Center
school students, and to identify, select, enroll and retain minority students in the engineering field. Senior High School students also registered for dual enrollment classes at FIU.

Florida/Georgia Louis Stokes Alliance for Minority Participation (FGLSAMP)

This is a National Science Foundation funded program in association with Florida Agricultural and Mechanical University (FAMU), the leading institution. This program focuses on engineering, math chemistry, biology, physics, and computer science undergraduate students. Participants receive scholarships, during the entire academic year based on high GPA and being a full time student. Opportunities for summer internships are available.

Junior Engineering Technical Society (JETS)

The JETS Test of Engineering Aptitude, Mathematics and Science (TEAMs) is an academic problem-solving competition, that serves all public and private high schools within our geographical area with focus on a one day activity at Florida International University.

UNITE

A collaborative effort between Florida International University, the U.S. Army, and the Junior Engineering Technical Society. The JETS UNITE Program’s goal is to increase the number of underrepresented students in the field of engineering, to improve the performance of the students in their SAT/ACT exams, develop resourceful, self-motivated well rounded graduates who will be responsible and well adjusted citizens.

ENLACE/Miami The Children Trust, this program is funded by The Children Trust and provide after school and summer programs for 650 children (ages 7-17) residing in the Sweetwater, Doral and West Kendall areas. The after school program will offer literacy support through individualized software-based reading intervention, social skills development, and health fitness education. The summer program will offer students the unique opportunity to attend classes on a university campus.

GEAR UP Homestead

The GEAR UP Homestead project assists a maximum number of students living within the Homestead area achieve a college career, while implementing a self-sustaining system to continuously duplicate the process. Homestead Florida is faced with serious issues that require assistance from other communities, such as poverty, lack of jobs, and problems related to disadvantaged societies. Fortunately with the development of the GEAR UP Homestead Partnership Plan, as well as the aide to public, private and governmental institutions, the targeted cohort students of the Homestead area will be able to reach their maximum potential through a college education. Partners such as the US Department of Education will supply a vast portion of the resources needed to perform this project. Aspira, a non-profit organization, is dedicated to creating leadership through education for those who are disenfranchised, or socially and economically disadvantaged. Another important team player is the Non-Violence Program of Miami, contributing the idea that knowledge is the best weapon against violence, and motivating young people to engage in positive action to make our communities safer.

The GEAR UP project is made of several components that contribute to a wider reach into insuring that a maximum result is gained by everyone involved. Among these components are in-school tutoring and assistance programs. The Summer Enrichment Program offers an alternative way of spending those long summer days. The teacher training Development Program, as well as PRISM (Program of Industry Supported Mentorship’s) enrich teachers with the right preparation to confront all kinds of situations. Perhaps the most important aspect that will contribute to the outcome of the child is the parental influence and family involvement into their success. In a fast-paced and demanding society, this is often a difficult threshold to cross. Parent Involvement Program (PIP) encourages parents to have a positive active role in their child’s every day awareness of the future. Education begins in the home and ends in the child’s decision to instill a safe and productive future. The powerful drive needed to assist the process of growth and awareness is the very reason for the existence of programs such as GEAR UP.

The mission of the partnership addresses the needs of the student by bringing the necessary awareness and readiness for a successful college education. To succeed advancement, GEAR UP has established a mission, goals, objectives and outcomes that will serve as the foundation for a successful program. The dedication of the partnership as well as a Vision Statement that clearly unifies the community to serve its future provides an inspiration: that the education of today paves the road towards tomorrow’s success.

Center of Emerging Technology for Advanced Information Processing and High-Confidence Systems (CREST)

Naphtali Rishe, Director and Professor, School of Computing and Information Sciences

The CREST center focuses on the following research areas: High-confidence reactive software systems, multidimensional-multimodal data modeling and query research, assistive technology research based on the design and development of real-time assistive systems, and advanced information processing with neuroscience applications. This multidisciplinary research and educational center serves as a resource for the education of underrepresented minority students as well as a driving force to increase diversity in graduate education, especially at the Ph.D. level in computer science and engineering.

Center for the Study of Matters at Extreme Conditions (CeSMEC)

Surendra Saxena, Director and Professor, Mechanical and Materials Engineering

Jiuhua Chen, Deputy Director and Professor, Mechanical and Materials Engineering

Yu Zhong, Assistant Professor, Mechanical and Materials Engineering

Andriy Durygin, Research Coordinator

Vadym Drozd, Research Assistant Professor

Selva Venilla Raju, Research Assistant Professor

CeSMEC’s mission is to study the behavior of materials at high pressures and temperatures. The range of research activities includes the study of planetary interiors and of
matter at extreme industrial conditions. CeSMEC is one of few facilities in the country where pressures are created to many million atmospheres and temperatures to several thousand degrees; the material is studied under such condition with x-ray and electroscopic techniques.

All materials are subject to three fundamental variables — the variables of temperatures, chemical composition, and pressure. Modern science has vigorously used only the first two variables in exploring nature and creating several amenities of modern civilization. Pressure, the third fundamental variable altering all states of matter, has been for years a relatively minor esoteric subfield. The creation of this center is providing FIU’s graduate students and faculty the opportunity to perform fundamental and applied research in high-pressure physics, high-pressure chemistry, and materials science. The center is raising the infrastructure at FIU to the level required to initiate world-class research in an emerging area of science and engineering.

With recent additions of a Hydrogen-Storage Materials Research Facility and a large volume high pressure-high temperature equipment, researchers can perform synthesis of novel materials for a variety of industrial applications.

Distributed Multimedia Information Systems Laboratory

Shu-Ching Chen, Director and Professor, School of Computing and Information Sciences

The mission of the Distributed Multimedia Information System Laboratory (DMIS) is to conduct leading edge research in multimedia database systems, data mining, networking and wireless, GIS and Intelligent Transportation Systems. Other research areas of this effort include Multimedia Communications and Networking, Digital Library, 3D Animation, and Distributed Computing.

Division of Corporate and External Programs

Caesar Abi Shdid, Director and Senior Instructor, Civil and Environmental Engineering

The Division of External Programs (DEP) develops, promotes and manages academic programs offered under the rubric of Executive Engineering Education, Continuing Education, and Distance Learning in the College of Engineering and Computing.

The DEP is managed by a director reporting to the Dean of Engineering & Computing. The director and staff of the DEP work with department chairs, center directors and faculty members to identify corporate and global partners; develop, promote and manage Executive Engineering Programs; weekend graduate programs for professional, Distance Learning Programs, and Continuing Education Programs; and identify new opportunities and new markets for all programs that are offered by the College of Engineering and Computing. Various categories of programs in which the DEP is involved include the following:

Overseas Programs

The overseas programs focus on the demonstrated education and training needs of selected industrial sector(s) in the host country. These programs are offered in collaboration with a sponsor which is a reputed university or institution that can support the delivery of the program by providing appropriate infrastructure facilities like classrooms, library and computer laboratories. The programs are designed in consultation with the faculty of the sponsor and the industry representatives in the host country. The goal of the overseas programs is to complement the existing academic programs offered by the sponsoring institution.

Overseas Programs

• Corporate Programs
• Certificate Programs
• Weekend Graduate Programs
• International Student Transfer Programs

The international student transfer program (Dual Degree and Articulation Programs) allows undergraduate students from foreign universities to complete approximately 75% of their curriculum at home institution and the remaining 25% at FIU, and receive their undergraduate degree from both institutions. An articulation agreement ascertains the student’s ability to transfer courses taken at home institution to FIU such that FIU’s core curriculum and other undergraduate program requirements are met.

All participants in the program proceed as a cohort through a lock-step curriculum of the selected courses. The local faculty from the host country is also involved in teaching to enrich the program by integrating the economic, cultural, social, political and legal issues of the host country in the curriculum.

The international student transfer program (Faculty Development Program) allows the foreign universities, mostly in Latin America, to send their MS degree recipient faculty member to complete their PhD education at FIU. These students complete their coursework and dissertations proposals at FIU and then return to their home institutions where they complete their dissertation work. Agreements between the two universities allow for a lot of assistance to the student’s while they are working on their dissertation.

Corporate and Executive Programs

The Corporate Programs are designed for an individual corporation leading to an academic degree, certificate or short-term executive development program. The programs are delivered on site and the program delivery is supported by providing infrastructure facilities. Corporate programs are designed to meet the specific educational and training needs of the corporate clients. Currently, we offer the following engineering certificate programs: “Lean Six Sigma”, “Six Sigma Green Belt”, “Six Sigma Black Belt”, “ISO 9001”, and “Supply Chain Management” certification program every semester.

Continuing Education Programs

The Continuing Education Programs are designed to meet the licensing and certification needs of individual professionals in the engineering and construction fields. The programs are delivered at various locations around Florida and online. The Continuing Education Programs can be conducted on site for companies. Currently, we
offer the following continuing education programs: “FDOT Construction Training and Qualification Program (CTQP)”, “FDOT Maintenance of Traffic in Construction Zones (MOT)”, “Professional Engineering (PE) Licensing Exam Review Courses for the NCEES PE Civil, PE Mechanical, PE Electrical (Power), and PE Structural exams”, “Fundamentals of Engineering Exam (FE) Review Course”, “Florida General Contractor’s Exam (GC) Review Course”, “OSHA Training Certification Courses”, “LEED Exam Prep Course”, “Florida Laws and Rules Seminars”, and “Continuing Education Seminars (for PEs and GCs)”. Weekend Graduate Programs for Professionals

DEP offers professionals in South Florida the ability to complete their master degrees in an accelerated one-year program that is conveniently offered on Saturdays in Broward County and the Miami downtown area. These programs are specifically designed for working professionals who aspire to a graduate degree without interrupting their careers. DEP currently offers a Professional MS Construction Management degree program that is conveniently offered on Saturdays in Broward County and the Miami downtown area. These programs are specifically designed for working professionals who aspire to a graduate degree without interrupting their careers. DEP currently offers a Professional MS Engineering Management and a Professional MS Construction Management degree programs in this lock-step format.

Distance Learning Programs

The Florida Engineering Education Delivery System (FEEDS) is a statewide distance learning system providing access to graduate and undergraduate level engineering courses and programs to individual students anywhere and anytime, whether it is at home or the workplace. Courses are delivered through streaming video over the Internet; and fully on-line. FEEDS offers engineering students and professionals with work and family responsibilities the flexibility to take courses around their busy schedules. It also provides convenience to those who are not within driving distance of an academic institution. It allows them to continue their professional development, which plays an important role in the growth of high technology industries.

Currently, students can select the necessary courses from FIU via distance learning to obtain a Master’s degree in Civil Engineering, Environmental Engineering, and Construction Management. Selected undergraduate courses are also available for the following undergraduate degree programs: Civil Engineering, Construction Management, Environmental Engineering, Mechanical Engineering, Electrical Engineering, and Computer Science.

A student taking a course through FEEDS must meet the same requirements as the student on campus and will earn the same credit as if he/she were to attend classes on campus. A student need not be enrolled in a graduate or undergraduate degree program in order to take a course. However, a non-degree seeking student who intends to seek admission to a program should be aware that no more than twelve (12) graduate or fifteen (15) undergraduate credits are allowed to be transferred into a program.

Engineering Information Center (EIC)

Hernan Bormey, Director

Create a technology that will help save lives or create your own website, simulate an electronic circuit, design a bridge, or just browse the Internet. The possibilities are endless at Engineering Information Center.

EIC helps faculty, students, researchers, and students to conduct cutting edge research and work on system designs, networking, scientific visualization, 3D Modeling, simulations, virtual reality, computer animation, and other computer and software applications.

The Center manages an array of Novell, Windows, and UNIX network servers that provide faculty, staff and students with the capacity to share valuable resources; therefore, fostering an atmosphere where collaboration and instruction grow with a synergy that is unique. Beyond the college community, EIC participates in sponsoring special outreach programs for the Miami-Dade County Public Schools by exposing young minds to latest technologies.

EIC is also home to The Graphic Simulation Laboratory with focus on Scientific Visualization, 3D Computer Modeling, and Virtual Reality, which have helped researchers to develop a wide array of technologies, strategies, and information designs. GSL has collaborated with NASA, The Center for Super Computing Applications, National Science Foundation, Computational Science Institute, Shodor Organization, Macromedia, and Kellogg Foundation, just to mention a few. From hardware to software support to 3D modeling of a heart valve, EIC delivers exceptional services with a personal touch.

Engineering Manufacturing Center (EMC)

Ibrahim Tansel, Interim Chairperson, Director and Professor, Mechanical and Materials Engineering

Mario Sanchez, Senior Engineer and Manager

Richard Zicarelli, Coordinator

The Engineering Manufacturing Center provides technical expertise in manufacturing to anyone in need of assistance. Typically the Center supports researchers, graduate and undergraduate students with projects requiring high-precision quality fabrication and requiring expert technical guidance. Undergraduate engineering students represent the largest group served. Students of all academic departments benefit directly through help with class projects, such as Senior Design (capstone) courses, critical components of all ABET accredited Engineering programs in the College. Other major undergraduate projects supported include the Mini-Baja, Mini-Submarine and Robot Competitions. Graduate students regularly request fabrication assistance with experimental devices, tools and fixtures. The Center’s main facility supports the College’s academic departments’ general fabrication needs, including equipment repair, assembly, fixturing, installation, etc. An auxiliary EMC-supervised machine shop is available for student hands-on project work.

The Center also provides technical services to the outside community such as entrepreneurial consulting in product design and development and sub-contract fabrication work. Companies served by the EMC range from entrepreneurial to the well-established, some of which include aerospace, automotive, marine, medical and consumer product manufacturers. The Center runs state-of-the-art CAD/CAM software and operates a diverse array of rapid prototyping equipment combined with CNC.
capabilities providing a wide variety of fabrication processes. In addition, the Center can perform inspection, measurement and reverse engineering capabilities through its automated measurement equipment.

For more information, contact the EMC by calling Mr. Richard Zicarelli (305) 348-6557 or Mr. Mario Sanchez (sanchem@fiu.edu), or refer to the center’s website at http://www.eng.fiu.edu/emc/.

Eugenio Pino and Family Global Entrepreneurship Center

Jerry Haar, Executive Director

The Eugenio Pino and Family Global Entrepreneurship Center, founded in 2003 in the College of Business at Florida International University, fosters entrepreneurship throughout South Florida and internationally. The Pino Center provides the FIU and local communities with the knowledge and networks that enable them to reach their entrepreneurial objectives of designing, launching and nurturing successful new ventures and assisting established innovative enterprises in moving to the next level. Activities include: workshops and webinars, a business plan competition, a yearly conference on venture capital in the Americas, a venture mentor service, and a publication series, including working papers. Student and faculty in the Department of Management and International Business, as well as other departments and other schools and colleges within the University, are invited to participate in the programs and activities of the Pino Entrepreneurship Center. For more information, visit www.entrepreneurship.fiu.edu.

High Performance Database Research Center

Naphtali Rishe, Director and Professor, School of Computing and Information Sciences

One of our research efforts is the High-Performance Database Research Center (HPDRC). HPDRC conducts research on such theoretical and applied issues as Internet-distributed heterogeneous databases, database design methodologies, database design tools, information analysis, multi-media databases, database languages, data compression, spatial databases, and data visualization. The Center also designs specific database systems for highly complex applications.

International Hurricane Research Center (IHRC)

Stephen P. Leatherman, Director

Kegi Zhang, Laboratory for Coastal Research, Co-Director

Shahid Hamid, Laboratory for Insurance, Financial and Economic Research, Director

Arindam Chowdhury, Laboratory for Wind Engineering Research, Director, and Associate Professor, Civil and Environmental Engineering

Dario Moreno, Laboratory for Social Science Research, Director

Florida International University’s International Hurricane Center has officially changed its name to the International Hurricane Research Center (IHRC). The change was made to better reflect the Center’s research initiatives.

Serving the state of Florida, the IHRC is a Type I interdisciplinary research center focused on the mitigation of hurricane damage to people, the economy, and the built and natural environments. This designation makes the IHRC Florida’s official hurricane research center for 11 universities comprising the state university system.

The citizens of the U.S. East and Gulf Coasts and Caribbean Islands are severely impacted by hurricanes, and IHRC promotes an interdisciplinary, large-scale disaster research agenda to address this vulnerability. Disciplines such as architecture, business, economics, engineering, finance, geosciences, insurance, political science, sociology, and urban planning are involved in a long-term, integrated research program that helps Florida, the nation, and its regional neighbors to mitigate hurricane exposure.

The Center developed as a result of a public-private partnership between the We Will Rebuild Foundation, an organization formed to spearhead the rebuilding of Dade County in 1992 after Hurricane Andrew, and FIU. The IHRC works in conjunction with the National Hurricane Center, which is also located at the FIU Modesto A. Maidique Campus in West Miami-Dade.

Lehman Center for Transportation Research (LCTR)

L. David Shen, P.E., T.E. Director and Professor, Civil and Environmental Engineering

Sylvan C. Jolibois, Jr., Deputy Director and Associate Professor, Civil and Environmental Engineering

Albert Gan, Deputy Director and Associate Professor, Civil and Environmental Engineering

Favian Cevallos, Transit Program Director

The Lehman Center for Transportation Research (LCTR) at Florida International University was established in 1993 in honor of Congressman Bill Lehman and his tireless efforts to make South Florida a better place for all of us. The center’s vision is to become a ‘state-of-the-art’ transportation research and training facility. LCTR is committed to serve and benefit our society by conducting research to improve mobility, hence the quality of life issues, develop partnerships in the transportation industry, and educate a multidisciplinary workforce to plan, manage and implement transportation systems.

Faculty, staff and students at LCTR are involved in research related to the planning, design, operation and maintenance of transportation systems, including intelligent transportation systems, public transportation, highway transportation, aviation, and freight; as well as public policy, air pollution, and the application of geographic information systems and other advanced technologies such as artificial neural networks and scientific visualization in transportation. Future plans include networking with the public and private industry to collaborate on transportation related research. In addition, applied research will be conducted on, but not limited to intelligent vehicle and highway systems.
Motorola Nanofabrication Research Facility

Chunlei (Peggy) Wang, Interim Director and Associate Professor, Mechanical and Materials Engineering
Neal Ricks, Lab Manager

The first centralized facility of its kind in Florida, the Motorola Nanofabrication Research Facility is an open-access initiative in support of nano-scale devices, systems and materials research that encompasses a broad range of technologies and capabilities. The facility provides nanofabrication, analytical instrumentation, materials characterization and process-development laboratories for students, faculty and industrial researchers. This $15 million Research Facility is an integral part of the Advanced Materials Engineering Research Institute (AMERI), FIU’s broader materials research program.

Harnessing the synergy inherent in the study and development of nanoscale technologies, the facility boasts:

- Specialized equipment required to develop new and novel fabrication techniques unique to the creation of functional materials and devices that are no greater than 100 nanometers (1,000 times smaller than the diameter of a human hair);
- A full complement of standard semiconductor processing equipment to leverage the capabilities of robust and proven techniques; and
- State-of-the-art analytical tools to study, and characterize these nano-sized devices, as well as the materials and processes used to make them.

The Nanotechnology Faculty Team
Chunlei (Peggy) Wang, Interim Director and Associate Professor, Mechanical and Materials Engineering
Arvind Agarwal, Professor, Mechanical and Materials Engineering
George Dulikravich, Professor, Mechanical and Materials Engineering
W. Kinzy Jones, Professor, Mechanical and Materials Engineering
Grover Larkins, Professor, Electrical and Computer Engineering
Watson Lees, Associate Professor, Chemistry
Chenzhong Li, Associate Professor, Biomedical Engineering
Wenzhi Li, Associate Professor, Physics
Anthony McGoron, Associate Professor, Biomedical Engineering
Surendra Saxena, Professor, Mechanical and Materials Engineering
Frank Urban, Associate Professor, Electrical and Computer Engineering
Yuriy Vlasov, Research Engineer

Structures and Construction Laboratory

Amir Mirmiran, Director
Nakin Suksawang, Deputy Director
Edgar Polo, Lab Manager

Structures and Construction Laboratory (SCL) is established to provide hands-on educational experience for students; to research and development of innovative hurricane-resistant and durable construction materials, structural systems and components; to serve the construction industry; to contribute to the engineering community in South Florida, and to advance the safety, durability, and economy of our civil infrastructure.

The Structures and Construction Laboratory was built through the help of a consortium of 21 industry partners who donated materials, services, and cash in excess of $250,000. It is one of the largest facilities in the State of Florida and is equipped with a full-scale structural testing system (FSST). The FSST consists of a 15 ft tall testing frame that stands above a 35 ft × 65 ft strong concrete floor with 4 ft thickness and 100,000 lbs capacity tie-downs on a 3 ft × 6 ft pattern. The steel frame is capable of testing full-scale structural members, such as a 65 ft bridge girder. The applied load is replicated using a fatigue rated tension/compression actuator that is capable of performing cyclic loading. In addition to the FSST, the SCL is also equipped with other material testing systems, including a universal testing machine, compression machine, and small-scale load frames.

Telecommunications and Information Technology Institute

Niki Pissinou, Director and Professor, School of Computing and Information Sciences

Florida International University (FIU) recognizes the need to nurture highly trained personnel for the nation’s industry and business, develop research to support the rapidly expanding high-tech industry and become proactive in technology transfer. Thus, ensuring continued economic growth and prosperity in the region. In order to fully meet today’s technological demands, FIU has established the Telecommunications and Information Technology Institute (IT²). IT² promotes advanced multidisciplinary education and research focused on telecommunications and information technologies. IT²’s mission is to:

1. Deliver high quality telecommunications and information technology education and training.
2. Conduct and promote research to enhance Florida’s role as a leader in telecommunications and information technology.
3. Offer training that is needed to foster business development and workforce preparedness.
4. Promote technology transfer to enhance the enabling technologies of the telecommunication and information technology industries.

In fulfilling its mission, IT² promotes multidisciplinary collaboration and serves as the catalyst to promote intellectual cross-fertilization among disciplines. This effort results in the synergistic enhancement of teaching and research, so critical in the telecommunications and information technology fields, where disciplinary barriers are falling and lines are blurred. An objective of the Institute is to infuse telecommunications and information technology content into the curriculum at all appropriate levels. To fill the urgent demand of industry, the institute is developing interdisciplinary telecommunication programs that provide certificate programs, Bachelors, Masters and Ph.D. degrees.

IT² constitutes an infrastructure that is viable for cutting edge research activities. Researchers at the institute conduct funded research and development targeted at solving complex problems conducive to the early
identification of high impact opportunities. Of particular importance to the institute’s research efforts is the emerging global wireless, optical and personal communications infrastructure and the ability to represent, store and access information to perform a variety of information related tasks. To provide an effective forum for original research results and to foster communication among researchers, industry leaders can collaborate on education, training, and re-engineering the telecommunications workforce of the future. The alliance provides effective ways to educate the workforce of the 21st century. In accordance, the institute provides technical assistance and applied research services to transfer acquired knowledge and technologies to the commercial sector. The IT² team can work with industrial organizations to tap into some technological innovations that drive the industry to its strategic advantage.

For more information, contact Dr. Niki Pissinou, the director of the Telecommunications and Information Technology Institute, at (305) 348-3987 or visit our Website at www.it2.fiu.edu.

Core Faculty
Niki Pissinou, Director and Professor
Deng Pan, Associate Professor

Affiliated and Research Faculty
Kang Yen, Professor, Electrical and Computer Engineering

Jean Andrian, Associate Professor, Electrical and Computer Engineering
Shih-Ming Lee, Associate Professor, Engineering Management Program
Osama Mohammed, Professor, Electrical and Computer Engineering